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Abstract

Segmentation of the risk has always been of important topic for insurance companies
to prevent themselves from adverse selection. Models used to estimate the risk are
becoming more and more complex and exploit more and more variables.

Traditional methods such as Generalized Linear Model are not adapted to capture
interaction effects within numerous input variables, and therefore uncertainty can
remain in the efficiency of the fitted models.

We have seen in the past years an increasing use of Machine Learning models in a large
variety of fields. Temptation to use those complex models in the insurance industry
is no exception. However, insurance companies are faced with regulation constraints,
requiring them to be in the capacity to explain their predictions. Therefore, the use of
Machine Learning models are often limited.

This study shows a way to use Machine Learning models to supervise the calibration
and segmentation performance of traditional Generalized Linear Model models, through
the example of mortality level risk estimation using health status variables for enhanced
annuity products.

Our study is based on UK health data originating from THIN database. We show
that, when taking advantage of knowledge from medical experts as well as insights
provided by sensibility analysis of a Machine Learning model, it is possible to have
close predictive performances between a Generalized Linear Model and a Machine
Learning model.

Key Words: Survival analysis, Generalized Linear Model, Machine Learning, Segmentation,
Mortality Level, Enhanced Annuities
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Résumé

La segmentation du risque a toujours été un sujet important pour les compagnies
d’assurance afin de se prémunir contre l’antisélection. Les modèles utilisés pour estimer
le risque deviennent ainsi de plus en plus complexes et contiennent de plus en plus de
variables.

Dans le cas d’un nombre élevé de variables explicatives, les méthodes traditionnelles
telles que le modèle linéaire généralisé (GLM) ne sont pas adaptées à la prise en compte
d’effets d’interactions complexes, et donc l’incertitude peut subsister sur l’efficacité de
ces modèles.

Nous avons constaté au cours des dernières années une utilisation croissante des modèles
de Machine Learning dans une grande variété de domaines. La tentation d’utiliser ces
modèles puissants dans le secteur de l’assurance ne fait pas exception. Cependant, les
compagnies d’assurance sont confrontées à des contraintes réglementaires, les obligeant
à être en mesure d’expliquer leurs tarifs. Par conséquent, l’utilisation des modèles
d’apprentissage automatique est souvent limitée.

Notre étude montre un moyen d’utiliser des modèles de Machine Learning pour superviser
les performances de calibrage et de segmentation des modèles GLM traditionnels, à
travers l’exemple de l’estimation du risque de niveau de mortalité par de nombreuses
variables relatives à l’état de santé pour des produits de rente sur risque aggravé.

Notre étude est basée sur des données de santé britanniques provenant de la base
de données THIN. Nous montrons que, en tirant parti des connaissances d’experts
médicaux ainsi que des informations fournies par l’analyse de sensibilité d’un modèle
d’apprentissage automatique, il est possible d’avoir des performances prédictives proches
entre un modèle linéaire généralisé et un modèle d’apprentissage automatique.

Mots-clés: Analyse de survie, Machine Learning, Segmentation, Niveau de mortalité,
Rentes aggravées
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Executive summary

Context

For insurance companies, longevity risk is the risk that life expectancies and survival
rates exceed their predictions, resulting in greater-than-anticipated claims to pay. This
longevity risk is the main risk in life annuities products.

Those products provide guaranteed income payments until death of the insured and are
usually purchased at time of retirement. They are usually priced using few characteristics
such as age and gender of the applicant. However, the last decades have seen the
appearance of a new life annuities product, called underwritten or enhanced annuities,
that propose annuities tailored to applicant’s health status. Enhanced annuities seek
at offering a better price, i.e. higher annuities amount, to applicants that have lower
life expectancies than the average.

This master thesis focuses on the estimation of the level risk component of longevity
risk, firstly to establish traditional life tables and secondly to establish models adapted
to enhanced annuities. To do so, we considered THIN database, a large database
representative of the UK population. This data set contains a large amount of information
related to individual’s health status, along with their survival.

Standard life tables estimation

The first part of the study consisted in constructing classic life tables, based on gender
and a socio-economic variable called mosaic. Mosaic is a classification of households
based on their residence postcode. The residencies are regrouped in 68 non-ordered
groups.

In order to obtain a reasonable amount of produced life tables, without loosing prediction
performance, we constructed and used an agglomerative hierarchical clustering approach
on the mosaic classes. This method consists in merging at each step the two modalities
that led to the less loss in prediction power. We then obtained at each merging step a
set of clusters of mosaics.

Once we determined the socio-economic clusters at each clustering step, we relied on a
Generalized Additive Model (GAM) to construct our life tables per gender and cluster.
In Figure 1 we show the AIC of the GAM model fitted on gender and mosaic clusters
found at each clustering step.
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Figure 1: AIC of GAM model fitted on gender and mosaic clusters found
at each clustering step

The optimal number of clusters is the one resulting in minimum AIC, namely 7. We
thus obtained 14 life tables, one for each gender and mosaic cluster, as illustrated in
Figure 2.

Figure 2: Fitted life tables per gender and socio-economic cluster using
Binomial GAM model

Mortality rates estimation using health variables

Then, we considered health variables to predict mortality rates. We applied a traditional
GLM model as well as a Machine Learning GBM model, using our fitted life tables as
reference predictions.

When considering a classic approach as the GLM, one needs to assume a relationship
between the response variable and the covariates. This relationship should reflect the
impact of the health related variables on our mortality. We relied on descriptive statistic
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analysis and medical knowledge during the feature engineering process in order to
encompass all reasonable possible effects.

Afterwards, we applied a Lasso penalization in order to get rid of non-relevant terms
and reduce the number of variables necessary to the model. Based on grid search on the
penalization parameter λ, we decided to retain two penalization coefficients. The first
penalization was given by λ1se which is a commonly chosen penalization. The second
penalization chosen was a little stronger and permeated to reduce a little more the
complexity of the model without too much increase in deviance. In total, we fitted
three models:

Model name Penalization Number of
fitted coefficients

Number of
variables used

GLM 0 143 38
GLMnet_long λ1se= 8.51e-05 77 32
GLMnet_small 1.50e-03 41 19

Table 1: Summary table of the GLM models fitted

In addition to those three models, we considered a Gradient Boosting Machine (GBM)
model. We relied again on grid search to get the best hyperparameters in order to
produce the best predictions.

The benefit of this model is that no relationship between the target variable and the
covariates must be assumed. However, one limitation of these kinds of models is the
limited interpretability. To avoid any issues with regulators, insurance companies aim
to have the capacity to justify and explain the prices offered.

Some sensitivity analysis were completed on the GBM model, in the aim to unravel
potential effects that had not been considered during the feature engineering process of
the GLM. Partial dependencies plots confirmed the shape of impact of some variables.
Also, Sobol indices estimation was performed on the GBM model in the desire to
assess if we had taken into account the main explanatory variables interactions during
the GLM feature engineering process. Unfortunately, estimation was computationally
intensive, and our results were inconclusive and unstable.

Life expectancy predictions

After constructing our GAM life table model as well as the 3 GLMs and the GBM
model using health variables, we computed residual life expectancies at age 65 based
on the predicted mortality rates. We provide box plots showing the dispersion of period
life expectancy predictions on our test data set per model:
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Figure 3: Distribution of predicted residual life expectancy at age 65 for
each model

As expected, we visualize a significant increase of the segmentation, or discrimination,
of the models that include health status variables compared to the GAM life table
model.

Calibration performance

We assessed calibration accuracy using calibration plots and A/E1 plots. Calibration
metrics are statistics that partition a data set into groups and assess how the average
predicted probability compares with the observed probability in each group.

We noticed that the models using health status variables were well calibrated, expect
for the GLMnet_small model which showed less accuracy in its calibration on some
segments of the population.

Discrimination performance

We then gave interest in the ability of the models to discriminate the individuals. In
survival models, discrimination performance refers to the ability of a model to predict
whether an annuitant will live longer than another one’s. This ability to discriminate
is important for us, as the goal of enhanced life annuities is to offer more advantageous
annuities to people that have a life expectancy shorter than others.

We relied on the C-index metric to assess discrimination performance:
1Actual over Expected
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Model C-Index
GAM 58.37%
GBM 66.37%
GLM 66.20%

GLMnet_small 65.40%
GLMnet_long 65.92%

Table 2: C-Index discrimination metric of each model

We concluded that GBM had the best discrimination performance, however the GLM
models have a close discrimination power.

Overall performance

On top of calibration and discrimination metrics, we assessed overall goodness of fit.
We provide here the results of the metrics considered:

Model pseudo-R2 A/E
GAM 0.156 99.36%
GBM 0.180 99.44%
GLM 0.177 99.78%

GLMnet_small 0.170 100.23%
GLMnet_long 0.176 99.73%

Table 3: Overall performance metrics

Once again, the GLM models show a predictive performance close to the GBM one.

Conclusion

Based on the different calibration, discrimination and overall metrics, we concluded
that the Gradient Boosting Model is the best predictive model. However, the GLM
performances are very close. This means that the effect of all the main explanatory
variable have been well taken into account during the GLM feature engineering process.
Thanks to the data preparation and the insights on the underlying risk behaviour, we
managed to reach the prediction power of a machine learning model.

We can also conclude that it would be reasonable to use one of the two GLMnet
models. We could recommend the use of the GLMnet_long as it allows to reduce
the complexity and the number of explanatory variables used with almost no loss in
performances.
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Note de synthèse

Contexte

Pour les compagnies d’assurance, le risque de longévité réside dans le risque que
l’espérance de vie et les taux de survie dépassent leurs prévisions, entraînant des
montants versés aux assurés plus importants que prévu. Le risque de longévité est
le principal risque des produits de rentes viagères.

Ces produits permettent des versements de revenu garantis jusqu’au décès de l’assuré
et sont généralement souscrits au moment de la retraite. Ils sont généralement tarifés
en fonction de quelques caractéristiques telles que l’âge et le genre du demandeur.
Cependant, les dernières décennies ont vu l’apparition d’un nouveau produit de rentes
viagères, dites rentes sur risque aggravé, qui proposent des rentes adaptées à l’état
de santé du demandeur. Les rentes sur risque aggravé visent à offrir un meilleur prix,
c’est-à-dire un montant de rente plus élevé, aux demandeurs de rente viagère dont
l’espérance de vie est inférieure à la moyenne.

Ce mémoire s’intéresse à l’estimation du risque de niveau, composante du risque de
longévité, d’une part pour établir des tables de mortalité traditionnelles et d’autre part
pour établir des modèles adaptés aux rentes sur risque aggravé. Pour ce faire, nous avons
utilisé la base de données THIN, qui est une grande base de données représentative de
la population britannique. Ces données contiennent une grande quantité d’informations
liées à l’état de santé de l’individu, ainsi qu’à sa survie.

Estimation de tables de mortalité classiques

La première partie de l’étude a consisté à construire des tables de mortalité classiques,
basées sur l’âge, le genre ainsi qu’une variable socio-économique appelée mosaic. Le
mosaic est une classification des ménages basée sur l’adresse de résidence. Les résidences
sont classifiées selon 68 groupes non ordonnés.

Afin d’obtenir un nombre raisonnable de tables de mortalité produites, et sans perdre
en performance de prédiction, nous avons construit et utilisé une approche de clustering
hiérarchique agglomératif sur les classes mosaic. Cette méthode consiste à fusionner à
chaque étape les deux modalités qui conduisent à la moindre perte de performance
prédictive. Nous obtenons ainsi à chaque étape un jeu de clusters de mosaics.

Une fois les clusters socio-économiques déterminés à chaque étape du clustering, nous
nous sommes appuyés sur un Modèle Additif Généralisé (GAM) pour construire nos
tables de mortalité par genre et par cluster. Dans la figure 4, nous montrons l’AIC du
modèle GAM ajusté par genre et par jeu de clusters obtenu à chaque étape.
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Figure 4: AIC du GAM ajusté sur le genre et les clusters de mosaic trouvés
à chaque étape du clustering

Le nombre optimal de clusters de mosaics résultant en un AIC minimum est de 7. Nous
avons ainsi obtenu 14 tables de mortalité, une par genre et cluster, comme illustré dans
la Figure 5.

Figure 5: Tables de mortalité par genre et cluster socio-économique obtenues
par un modèle GAM binomial

Estimation de taux de mortalité en fonction de l’état de santé

Ensuite, nous avons considéré des variables de santé pour prédire les taux de mortalité.
Nous avons appliqué un modèle GLM traditionnel ainsi qu’un modèle de Machine
Learning GBM, en utilisant nos tables de mortalité comme prédictions de référence.

Lorsque l’on considère une approche classique comme le GLM, il faut supposer une
relation entre la variable de réponse et les variables explicatives. Cette relation devrait
refléter l’impact des variables liées à la santé sur notre mortalité. Nous nous sommes
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appuyés sur une analyse de statistiques descriptives et des connaissances médicales au
cours du processus de feature engineering afin d’englober la majorité des impacts des
variables explicatives.

Ensuite, nous avons appliqué une pénalisation Lasso afin de nous débarrasser des termes
non pertinents et de réduire le nombre de variables nécessaires au modèle. Sur la base
d’un grid search sur le paramètre de pénalisation λ, nous avons décidé de retenir deux
coefficients de pénalisation. La première pénalisation a été donnée par λ1se qui est
une pénalisation couramment choisie. La deuxième pénalisation choisie était un peu
plus forte afin de réduire un peu plus la complexité du modèle sans trop augmenter la
déviance. Au total, nous avons équipé trois modèles :

Nom du modèle Pénalisation Nombre de
coefficients

Nombre de
variables utilisées

GLM 0 143 38
GLMnet_long λ1se= 8.51e-05 77 32
GLMnet_small 1.50e-03 41 19

Table 4: Tableau récapitulatif des modèles GLM

En plus de ces trois modèles, nous avons envisagé un modèle Gradient Boosting Machine.
Nous nous sommes à nouveau appuyés sur un grid search pour obtenir les meilleurs
hyperparamètres afin d’améliorer les prédictions.

L’avantage de ce modèle est qu’aucune relation entre la variable cible et les covariables
ne doit être supposée. Cependant, l’une des limites de l’utilisation de ces types de
modèles est leur interprétabilité limitée. Afin de respecter la réglementation, les compagnies
d’assurance visent à avoir la capacité de justifier et d’expliquer les prix proposés.

Certaines analyses de sensibilité ont été réalisées sur le modèle GBM, dans le but de
découvrir des effets potentiels qui n’avaient pas été pris en compte lors du processus
de feature engineering du GLM. Une analyse de graphiques de dépendance partielle
a confirmé des formes d’impact non-linéaire de certaines variables sur le taux de
mortalité. De plus, une estimation des indices de Sobol a été effectuée sur le modèle
GBM dans le but d’évaluer si nous avions pris en compte les principales interactions des
variables explicatives. Malheureusement, l’estimation nécessitait des temps de calculs
trop élevés et les résultats se sont révélés peu concluants et instables.

Prédiction de l’espérance de vie

Une fois avoir construit nos tables de mortalité GAM ainsi que les 3 GLM et le modèle
GBM, nous avons calculé les espérances de vie résiduelles à 65 ans à partir des taux
de mortalité prédits. Nous fournissons des boîtes à moustaches montrant la dispersion
des prédictions d’espérance de vie périodique sur une partie de notre base de données
de test pour chaque modèle :
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Figure 6: Distribution de l’espérance de vie résiduelle prédite à 65 ans pour
chaque modèle

Comme anticipé, nous visualisons une augmentation significative de la segmentation,
ou discrimination, des modèles qui incluent les variables d’état de santé par rapport
au modèle de tables de mortalité GAM.

Performance de calibration

Nous avons ensuite évalué la précision de calibration de nos modèles à l’aide de calibration
plots et de mesures de A/E2. Les métriques de calibration sont des statistiques qui
divisent un ensemble de données en groupes et évaluent comment la probabilité prédite
moyenne se compare à la probabilité observée dans chaque groupe.

Nous avons remarqué que les modèles utilisant des variables d’état de santé étaient
bien calibrés, à l’exception du modèle GLMnet_small qui montrait un calibrage moins
correct sur certains segments de la population.

Performance de discrimination

Nous nous sommes ensuite intéressés à la capacité des modèles à discriminer les individus.
Dans les modèles de survie, la performance de discrimination fait référence à la capacité
d’un modèle à prédire si un rentier vivra plus longtemps qu’un autre. Cette capacité
de discrimination est importante pour nous, car le but des rentes viagères sur risque
aggravé est d’offrir des rentes plus avantageuses aux personnes qui ont une espérance
de vie plus courte que les autres.

2Actual over Expected
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Nous nous sommes appuyés sur la métrique C-index pour évaluer les performances de
discrimination :

Modèle C-Index
GAM 58.37%
GBM 66.37%
GLM 66.20%

GLMnet_small 65.40%
GLMnet_long 65.92%

Table 5: Métrique de discrimination C-Index de chaque modèle

Nous avons conclu que le GBM avait les meilleures performances de discrimination,
cependant les modèles GLM ont un pouvoir de discrimination proche.

Performance globale

En plus des mesures de calibration et de discrimination, nous avons évalué la qualité
globale de l’ajustement. Nous donnons ici les résultats des métriques considérées:

Modèle pseudo-R2 A/E
GAM 0.156 99.36%
GBM 0.180 99.44%
GLM 0.177 99.78%

GLMnet_small 0.170 100.23%
GLMnet_long 0.176 99.73%

Table 6: Indicateurs de performances globales

Encore une fois, les modèles GLM montrent une performance prédictive proche de celle
du GBM.

Conclusion

Sur la base des différentes métriques de calibration, de discrimination et de mesures
globales, nous avons conclu que le modèle de Gradient Boosting est le meilleur modèle
prédictif. Cependant, les performances du GLM sont très proches. Cela signifie que
l’effet de toutes les principales variables explicatives a été bien pris en compte lors du
processus de feature engineering du GLM. Le travail réalisé sur la compréhension des
impacts non-linéaires et des interactions des variables explicatives nous a ainsi permis
d’atteindre la puissance de prédiction d’un modèle de machine learning.

Nous pouvons également conclure qu’il serait raisonnable d’utiliser l’un des deux modèles
GLMnet. On pourrait préconiser l’utilisation du GLMnet_long car il permet de réduire
la complexité et le nombre de variables explicatives utilisées sans quasiment aucune
perte de performance.
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Introduction

Life annuities on aggravated risk (impaired annuities or enhanced annuities) are life
products offering more advantageous annuities for people whose life expectancy is lower
than the average. Access to this type of product is favoured by persons suffering from
one or several morbidities, chronic diseases such as diabetes or hypertension or more
generally cardiovascular diseases. It can also depend on the lifestyle of the insured
(regular smoker or not).

This type of insurance product is currently offered by 6 providers, including 5 in the
UK and 1 in Canada. They offer increased annuities from 9% to 35% depending on
annuitants characteristics. [24].

SCOR is a reinsurance company offering coverage for longevity risk. As of 2021, SCOR
longevity risk exposure represented around 10% of total life and health risk portfolio.
The majority of their longevity risk exposure are located in the UK market, and a
part of them are covering enhanced annuity products. In this context, SCOR wants to
update their mortality level estimates for the UK population.

The first part of this master thesis will focus on constructing traditional life tables
using a socio-economic variable.

In the second part of this study, we will use those constructed life tables as reference
predictions for models adapted to assess the level risk of enhanced annuity products.
We will estimate the mortality rates of individuals using some of their lifestyle and
health status variables. To meet with business constrains, the models that we want to
use should be interpretable in order to be in the capacity to explain the offered prices.
Therefore, we will focus on GLM models. However, in the context of adverse-selection
threat, we will compare their performance with a Machine Learning model, in order
to assess whether the GLM segmentation is as effective as a more complex black-box
model.

The last part of the study will focus on assessing the performance of our model through
a variety of metrics adapted for survival analysis.

The following work will focus on the level risk component of longevity
risk.
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Chapter 1

History on life annuities and mortality
modeling evolution

In this chapter, we provide a brief history of life insurance with a focus on life annuities
products. To fully understand historical facts, one must understand the background and
the historical context. We will be very brief in this respect as our goal is to take a bird
eye view on the mortality modelling evolution, the challenges triggered by life annuities
products and the solution provided.

1.1 Early ages - antiquity and middle age
Life annuities is one of the oldest life insurance coverage. The first proof of existence
of life annuity products come from the Egyptians in Antiquity [18]. But even though
the Egyptians had started census, it remains uncertain that the premiums of those
products were based on any mathematical tools.

Centuries later, around 200 AD, the Roman jurist Ulpian proposed a life annuity pricing
grid where the value of a life annuity was decreasing with annuitant age. Some consider
this pricing grid as the first life table ever created. However, it is most certainly more
an educated guess than an accurate risk estimation. Indeed, the impact of age on life
annuity price was supposed linear.

In the following centuries, selling life annuities was a popular and quick way for
European kingdoms and governments to fill the state reserves. This practice triggered
the need to assess annuity buyer’s life expectancy.
We will have to wait the 17th century for improvements on life prediction theory.

1.2 First developments - 17th century
Life annuities found a new source of development during the 17th century to finance
European numerous wars. European governments used annuities as a source of public
finance. Selling life annuities was a simple and quick way to raise money for the
ongoing wars. From there came the need to have solid mathematical tools to predict
life expectancy. But as we will see, life contingent financial products were not priced
following the mathematical theory that were in development at that time, for reasons
that we will expose.
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By the end of the 17th century, most of the problems concerning the valuation of
fixed term annuities like discounting and compounding techniques had been resolved
and permitted to determine the return of those products. But unlike the fixed term
annuity, life annuity valuation technics were limited.

1.2.1 First mortality table by J. Graunt

No real improvement had been made concerning mortality modelling, until John Graunt
introduced in 1662 the concept of life tables. Life tables are difficult to produce due to
the amount of data necessary during a period avoiding wars or pandemics. However,
during the 16th century, the Church of England started keeping records of marriages,
burials and christenings. Those registers were called bills and were published every
week. Those so-called Bills of London have been used by the London businessman
Graunt. He published a book called "Natural and Political Observations on the Bills
of Mortality" based on about 70 years of data. The Bills of London did not provide
age at deaths but only number of deaths per cause each week. Depending on the
nature of the cause of death (infant illness, elder illness) and some conjectures, Graunt
distributed the deaths across some age bands for his study. He provided analysis on
the evolution of deceases and elaborated a mortality table. His work founded the fields
of demography and epidemiology, and contributed to actuarial sciences. Here is the life
table he proposed:

Figure 1.1: Graunt’s life table based on the Bills of London

with prop.=proportion.

Although Graunt’s table is now considered as incorrect, it gained the attention of some
mathematicians as de Witt, Huygens, and Hudde that considered it and proposed
improvements.

1.2.2 Life expectation calculation by the Huygen brothers

Huygens brothers found a use to Graunt’s life table, they started a correspondence
in 1669 on the expectation of life and an application to life annuities valuation. They
developed the concept of mathematical expectation, but they stopped their work before
applying it to life annuities valuation.

In their correspondence, the Huygens brothers provide the first correct probability
based formulations of expected age at death and life expectancy. They depict a life
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table as a continuous function, calculate median additional years of life, and draw a
sharp distinction between median years of life and life expectancy.

Coming from the field of game theory, and with no probability theory developed at that
time, the vocabulary they employed was the one of game of chances, considering the life
table as a lottery [6]. Christiaan Huygens started working on the computation of mean
and median life expectancy, as well as joint-life expectation. He considers Graunt’s life
table as a uniform distribution, creating the first survival function Spxq.

Figure 1.2: Huygens’s survival function based on Graunt’s life table [6]

He explains graphically how to get the median life expectancy for a person of a given
age. For example, a person at age A has a median expectancy of AC. This is obtained
by taking the point C such that there are half fewer individuals still alive at age C
than at age A.

Even though the Huygens brothers were the firsts to do life expectancy calculation,
it is later in 1746 that Antoine Deparcieux created and defined the notion of life
expectancy.

Since the valuation of a life annuity only requires that the random variable of life
duration T be replaced by the value of an annuity certain of fixed expected duration
T , the Huygens brothers work has been a big step for life annuity valuation.

1.2.3 First annuity valuation method by Jan de Witt

Jan de Witt was a mathematician and the Grand Pensionary of Holland from 1653
to 1672. This period is called the golden age of Holland, even if it includes war
with England (1665-1667) and hostilities with France. Like many other European
contemporary government leaders, Jan de Witt relied on life annuities to finance
the military needs. However, he was concerned about the possible miss-price of life
annuities, a justified concern as life annuities premium was not age dependent [33].

De Witt corresponded with both Huygens and Hudde on topics evolving around mortality
rates, mortality tables, and the valuation of annuities of one or more lives. In 1671, he
published "Value of Life Annuities in Proportion to Redeemable Annuities", developing
a method for relating the value of annuities to the age of the beneficiary. He showed
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how to calculate the value of annuities using a constant interest rate and a hypothetical
mortality table introducing thus the probabilities over the duration of human life
[21].

In his approach, de Witt uses the concept of mathematical expectation developed by
Huygens. His theoretical work has been upheld by the empirical work of Hudde on
mortality statistics of life annuitant of Amsterdam from 1586 to 1590.

He calculated the price of a life annuity as the sum on every age t of the present value
of an annuity of payment 1 until age t. Using modern notation, de Witt is the initiator
of the now know following formula:

ax “ EraT s

“
1

lx

w´x´1
ÿ

t“1

at dx`t

with T the random variable of the remaining lifetime of someone aged x, lx the number
of person alive at age x, dx`t the number of death observed at age x ` t, and w the
assumed maximum age.

Based on his recommendation, in 1672 the city of Amsterdam began offering life
annuities with prices dependent on the age of the nominee. However, this practice
did not become widespread.

1.2.4 Modern modelling by Edmond Halley

In 1693, Edmond Halley, the famous English astronomer, used the birth and death
records of the city of Breslau (Poland) to construct a life table and used it to price life
annuities. According to some historians, his work greatly influenced the development
of actuarial science. The approaches and methods that Halley introduced are very close
to the methods that actuaries are using today to price life annuities. Three centuries
later, we are still relying on this work. [13]

1.3 Importance of correct life annuity valuation - end
18th century

During the 18th century, governments have used life contingents as a way to fill in
quickly the treasury. However, these loans were not always priced correctly as we will
see with the example of France.

Life annuities became the largest debt component of French during 18th

century

Since 1522, French government used to fill their coffer by selling the so-called rentes
perpétuelles, that one could translate to perpetual annuities. The annuity only obliged
the debtor to make the annual payment of interest on the capital loaned and could in
theory not include a maturity date: it was extinguished by a refund that could not be
imposed or denied to debtors. These products made up most of France public debt in
the 16th and 17th centuries. However, this started to change under Louis XIV.
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Life annuities started to be used by the government of Louis XIV in 1653 as a new way
to fill in the treasury. They were a way to get money without increasing government
debt. Indeed, life annuities products are financial products with no refund of the capital,
only payments of interest until death of the insured. Therefore, the French government
having too much debt, they decided to reduce it by selling life annuities and using the
cash to pay off part of the capital of their debt [16].

Life annuities remained a small part of interest costs until the death of Louis XIV
in 1715. However, after the death of Louis XIV, they quickly became the largest
component of French debt by 1789 [29]. During Louis XIV reign, French public debt
had increased due to its involvement in costly wars and its aristocracy’s extravagant
spending. At his death, the debt was so high that they had no other choice than to
reduce the return of the existing perpetual annuities. It is at that time that French
government had to move away from perpetual annuities after 1720, replaced by life
annuities [20].

The following graph shows the evolution of the nature of national public finances.

Figure 1.3: Annual volume of public borrowing, 1675-1795 (source [19])

From the debt burden to the political impasse that led to French Revolution

As we can see on Figure 1.3, in May 1789, the perpetual annuities and life annuities
were roughly similar in terms of invested capital (more than 1.1 billion for each type),
but the life annuities represented two-thirds (65%) of the interest, which amounted to
more than 160 million per year for these two parts.

Life annuities mispricing increases the debt

Among the explanations put forward to understand the bad returns of tontines, it was
assumed that those responsible for French finances underestimated the then booming
actuarial science: as proof, the life annuities were still not correctly valued after the
publication of the pricing tables of life annuities and tontines by Deparcieux (1746)
[19]. Indeed, those life annuities were sold without distinction on age during the most
desperate times (usually times of wars), in order to attract capital to finance wars. This
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was particularly the case during the years 1780s, when Necker launched life annuities
at the denier 10 (10%), regardless of the age of the subscriber. Even though progress
had been made in actuarial sciences and first mortality tables had been computed, life
annuities were not sold accordingly to their actuarial price.

The literature is divided around the causes of this miss-pricing. Here are possible
explanations why. First, the need for finances in times of war was high and so the
financial products needed to be attractive to be sold in big quantities. Second, looking
at the frequent defaults in the history of French debt, a default risk premium had to
be incorporated in the product as well. Finally, the mathematical tools for valuating
contingency risk were still in development at that time and actuarial sciences seemed
to not be trusted enough for the valuation.

This lead to a massive anti-selection as life annuity buyers were well aware about the
real value. This was aggravated as one could buy an annuity in someone else name.
This feature, push Swiss bankers to create an investment vehicle, the Thirty Maidens of
Geneva, where annuitants were 30 young ladies. The 30 annuities were pulled together
into a single vehicle and shares of the vehicles were sold. This allowed investors to
diminish the mortality risk and maximize their income. [14]

From the burden of the debt to the political impasse that led to French
Revolution

Unlike Britain that paid for their debt by raising taxes, France favored to contain its
debt by frequent partial defaults. When Louis XVI acceded to the throne in 1774, he
announced his intentions not to default. However, to honor the debts without default,
the government had to borrow even more, leading to increase even more the debt.
Therefore, the other solution of raising taxes gained interest. But in order to do that,
Louis XVI had to call the General Estates in July 1788. He eventually had to agree to
the doubling of votes of the Third Estate in hope for a constitutional solution. This was
the occasion for the Third Estate to speak out about the desire for increased control on
public finances (among other things). But the resulting political impasse over budget
reform ended up to the French Revolution [28] [29].

Epilogue

The case was made by Joseph Cambon, in charge of restructuring the French national
debt, in 1794 after the French Revolution. To do so, he relied on the best actuarial
science available at the time. He denounced French debt, and more specifically life
annuities, as being "ruinous, impolitic and immoral" [28], especially the ones sold after
1770 at a flat rate not depending on age and at a yield higher than the market.

1.4 Findings and theory about mortality modelling -
from the 19th century to nowadays

1.4.1 Modelling death rates from empirical life tables

Starting with de Moivre, an interest was to fit a model based on empirical observations
of the death rate by age. The question was to understand the appropriate relationship
of death rates and age.
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De Moivre’s linear assumption for interpolation of life tables

De Moivre assumes uniform deaths distribution between each discrete age to interpolate
life table and that way obtain a continuous survival model from a discrete one. He is
the first to formalize this model of a continuous model for human survival, even though
his model is very simple.

Gompertz model of the force of mortality

Taking a biological approach to mathematical modelling, Gompertz (1825) assumed
that the force of mortality starting at age 50/60 shows a nearly exponential increase,
where the two parameters of his model are positive and vary with the level of mortality
and the rate of increase in mortality with age. The Gompertz model has been modified
by Makeham (1867), to include an additional constant to take into account mortality
level unrelated to age [23]. Many models with various forms appeared following to
Gompertz model.

The above models describe mortality at a fixed point in time; however, actual mortality
is stochastic and evolving continuously. Thus, while the mortality models described
above are static, the parameters must be fitted periodically to accommodate changes
in mortality patterns.

1.4.2 Mortality forecasting and the construction of an annuity
product

The presence of a downward trend in mortality from the turn of the 20th century
encouraged annuity issuers to include future improvements in mortality rates in order
to be protected against future losses. The first tables to take this phenomenon into
account were those produced in the United Kingdom on the basis of data from insurance
companies covering the period 1900-1920. The now famous Lee-Carter model is the
reference model for prospective mortality table.

Today, the mortality assumptions of a portfolio of annuitants are constructed in two
stages. First, it is necessary to measure the current mortality of annuitants. Then, it
is necessary to apply a projection of future mortality in order to anticipate downward
trends in mortality. It is this first component on which we will be working on in this
study.

11



Chapter 2

Life annuities products and embedded
risks

2.1 Life annuity product presentation

2.1.1 Standard life annuity

As said in the first chapter, life annuities are products that pay an annuity to the
policyholder until they die. The goal of this product is to guarantee an income until
death of the annuitant. Its price is usually a function of the age and gender, but it may
also depend on other factors.

The annuitant pays a lump sum that corresponds to the price of the product, and in
exchange receives an annuity amount at a regular interval until their death.
The following graphic shows the cashflows generated by a life annuity product in its
simplest form:

Figure 2.1: Cashflows of a life annuity product, simple case

Multiple forms of this product exist. As an example, deferred life annuities are annuities
that start at a deferred date and for which the annuitant can contribute during the
time of their career.
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2.1.2 Enhanced life annuity

Enhanced annuities, also called underwritten annuities, allow insurers to take into
account a person’s lifestyle and medical history that may impact their life expectancy.

Enhanced annuities were developed around 1995 to enable to offer higher annuity
payments to annuitants with a lower life expectancy than the average.

The applicants disclose their medical information to enable the insurer to estimate
their life expectancy and to offer a life annuity price accordingly.

2.2 Risks attached to this product
Annuities, as every insurance products, are subject to risks. Here are presented the
risks attached to this product.

2.2.1 Longevity risk

Longevity risk encompasses all the risk that are not market or financial risk. It is the
risk that mortality of the annuitant is lower than the one expected by the insurer,
or equivalently that annuitant lifespan is longer than anticipated by the insurer, on
average on the insurer portfolio. If the insurer expected a lower life duration than the
one observed, then it will result in higher pay-out ratios.

Longevity risk can be decomposed in three components as depicted in the following
visualisation:

Figure 2.2: Decomposition of longevity risk (source : Internal)

• Trend risk is the risk that the future mortality rates differ from the predicted
ones. It comes from a bad estimation of the evolution of mortality when mortality
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is improving or reducing faster than expected. It is a systemic risk, if the improvement
of mortality rates is underestimated, every life expectancy will be underestimated.

• Level risk is the risk of an estimation error on current mortality rates of the
portfolio. This can occur when the sample population is too small or when this
population is not representative of the portfolio (basis risk). For instance, when
estimating mortality levels at high ages, only limited data is available. Therefore,
level risk is usually high at high ages.

• Volatility risk is the risk due to the intrinsic volatility of each life duration
composing the portfolio. High volatility risk may arise from a heterogeneous
portfolio or from a too small portfolio. This risk can be reducing by pooling
several portfolios using reinsurance.

2.2.2 Financial risk

When a life annuity product is subscribed, the received premiums (lump sum) are
invested and a level of return is expected. The financial risk is the event that the
financial income obtained is below the technical rate expected. The technical rate is
defined as the rate used for updating the commitments of the insurer to the annuitant,
and therefore constitutes the minimum reevaluation of the annuities that it guarantees
each year to the annuitant.

2.2.3 Risks specific to enhanced annuities

In addition to these risks, and like any product with medical selection and asymmetric
information, enhanced annuities may be subject to the risks of adverse selection and
moral hazard.

• Adverse selection for this type of product results in a selection of policyholders
who meet the conditions to subscribe to the product, but are in better health
on average than the intended targeted annuitants. This type of adverse selection
would consist for the applicant to "hide his good health".

• Moral hazard can occur in the event of an improvement in lifestyle declared by
the insured at the time of subscription (change from smoker to non-smoker, for
example).

We mention once again that the following study will focus on longevity risk only, and
more specifically on the level risk component.
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Chapter 3

Presentation of the data

3.1 THIN database

3.1.1 Presentation

SCOR’s main longevity risk exposition being located in the UK, we are going to use a
database recording information from the UK population.

The database we are using to conduct this study is called the THIN (The Health
Improvement Network) database, which is a large UK primary care database [1]. It is
provided through the IQVIA Medical Research Database (IMRD). It contains reliable
data on the health status and medical treatments of the population and enables follow-
up studies. Its primary purpose is to enable research in cardiovascular disease, mental
health, pharmacoepidemiology and other areas of research in primary care.

THIN collects anonymized patient medical data from its member physicians. This
means that data is collected at the level of the doctors, allowing a reliable transmission
of information. It contains data collected from over 600 General Practitioner (GP)
offices (an office can contain several practitioners) across the UK, covering 6% of the
UK population. GPs treat all common medical conditions and refer patients to hospitals
and other medical services for urgent and specialist treatment. They focus on the health
of the whole person by combining physical, psychological and social aspects of care.
GPs are often the first point of contact for anyone with a physical or mental health
problem. They play a role in treatment of cardiovascular, metabolic and respiratory
diseases and mental health problems, as well as chronic conditions such as asthma,
hypertension and diabetes [3].

A limit of this database is the collection of information at the level of primary care
practitioners only. The analysis of diseases treated by secondary care practitioners is
therefore more difficult due to the collection of partial information transmitted by the
patient’s general practitioner. For instance, in cancer risk analysis, transmission of the
information is not assured by the GP and no details on the severity of the disease
or treatments used in secondary care will be provided. Cancer data is considered as
being unreliable. This is why we will not be using cancer data in this study since other
databases provide much more detailed information (eg. SEER database).
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3.1.2 Data collection

As said previously, health data are collected through General Practitioners. GPs who
are part of the program record information on each consultation. Each time a patient
consults a GP, the GP inputs into a software the purpose of the visit, the drugs
prescribed if any and the biometric measurements performed if any, such as height
and weight or blood pressure. Additional information are also recorded as the date of
consultation and the patient ID. THIN compile all those data and then proceeds to an
anonymization of the patients.

In order to ensure that it is not possible to identify a patient, some variables are altered
and lose some degree of precision. For example, for the date of birth only the year of
birth is retained, and the postcode address of the patient is replaced by a socio-economic
mosaic type (mosaic variable will be explained in the next section).

3.1.3 Available information in the database

The database includes 4 types of information collected:

• Information on social class: Based on the address of residence of the patient,
a lifestyle profile is inferred. Three variables contribute to the lifestyle profile ;
Townsend, IMD1 and Mosaic class. Those three variables are all inferred based
on the residential area.

• Additional Health Data (AHD) information: smoking status, duration of smoking,
intensity of smoking, blood pressure, cholesterol level, BMI2, waist circumference,
alcoholism, alcohol intensity.

• Medical information: Dates of occurrence of major impairment events that includes:
heart attack, stroke, angina, hypertension, heart failure, atrial fibrillation, diabetes,
COPD3, asthma, kidney disease, Alzheimer’s, dementia, high cholesterol, neuropathy,
retinopathy, amputation, other circulatory diseases, etc. For some cases, the dates
of recurrence are also provided. (e.g. heart attack)

• Therapy information: History of drugs prescribed for the patient by the GP,
including drug names and prescription dates. As said previously, because the
THIN database is a primary care dataset, this data does not have a good record
history of cancer treatments. Chemotherapy and / or radiotherapy are performed
in hospitals, and general practitioners do not record all treatments received
outside primary care.

3.2 Processing of the data and some statistics

3.2.1 Study period and selection of patients

Study period: Our goal is to assess level risk. Therefore, we want to have enough
data to reduce the estimation risk, however we want to avoid having too old mortality
data that would not reflect the current mortality. Taking those two opposite constrains
into account, we chose to consider the deaths observed between years 2014 to 2019.

1Index for Multiple Deprivations
2Body Mass Index
3Chronic Obstructive Pulmonary Disease
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Therefore we will consider only patients that were observed during part or all of those
6 years period.

However, the construction of our database will use records of medical events that could
have occurred prior to 2014 in order to construct the health status variables of the
patients.

Patients selection: Because we are interested in a life annuity product designed for
newly retired persons, we are interested in the mortality risk after age 65. For that
reason, we filtered our database and considered only patients 65 and older during the
study period.

3.2.2 Transformation into longitudinal data

As said previously, information is recorded in databases when they are entered by the
GPs during the consultation. This data contains the patient ID, the date of consultation
and the collected medical information and are stored in different databases depending
on the nature of the information.

Figure 3.1: Structure and links between THIN databases

• Each row of the Patient file contains one patient with the year of birth, gender,
start and end of observation, death date (if applicable),etc.

• Each row of the Therapy file contains one prescription of one prescribed drug,
and quantity, with date of prescription and patient ID.

• Each row of the Medical file contains one medical event with event date and
patient ID.

• Each row of the AHD file contains one lifestyle information (eg smoking status)
or one measurement (eg BMI) with date and patient ID.
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Preprocessing of the database consisted in transforming those raw data information
from the different databases into a single longitudinal database. The final database
contains for each row one patient with in columns all variable of interest, such as
gender, year of birth, beginning and end of observation, death status, age at death (if
applicable), event date of comorbidities (if applicable), lifestyle variables, measurements
metrics and socio-economic variable.

Because we are interested in estimating the residual life expectancy of applicants given
their health status at age 65, we construct the variables using information of the
patients reflecting their records around that age. Therefore we use all the medical
information recorded in order to estimate the medical health of the patient at age 65.
For example, binary comorbidity variables, reflecting the event of comorbidity prior to
age 65, were constructed using event dates information. In case of missing records for
variables as smoking status, blood pressure, BMI, etc. simple imputation techniques
were applied, imputing the mean values of the population or default values (eg non-
smoker). Because only year of birth of patients was known (for anonymization purpose),
we imputed all dates of birth as 1st of July of their year of birth.

Another limit of the database is that postcode variable indicators are not recorded
continuously and therefore we will have to make the hypothesis that patients did not
change postcodes. This can be a reasonable assumption for retired people after 65.

We show here the first few rows and columns of the constructed database:

Figure 3.2: First columns and rows of the constructed patient-level database

We provide here the list of constructed columns, with the variable type or modalities if
applicable. We provide next the list of the comorbidities columns in a separate table for
convenience purpose. As said previously, all the comorbidity variables were estimated
at age 65 of the patient.
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Figure 3.3: List of variables (except binary variable for comorbidities)

We note that we added a train/test variable randomly generated and splitting the
dataset in 70% of train and 30% of test.

Below we provide the list of binary variables for comorbidities and some statistics: the
number of cases and the corresponding percentage of patients.

Figure 3.4: List of binary variables for comorbidities and statistics

3.3 Descriptive statistics
We have approximately 1 million patients in our final database. We provide here some
statistics on our database.

19



• Number of patients : 1,050,693

• Number of columns : 129

• Number of medical variables : 59

• Number of deaths observed : 141,756

Smoking variables

We are provided with 3 variables related to smoking habits: smoking status, smoking
intensity (applicable for smokers and ex-smokers) and smoking quit duration (applicable
for ex-smokers).

Smoking status has 3 modalities :

• NS : Non-smoker representing 43% of patients

• EX : Ex-smoker representing 42% of patients

• SM : Smoker representing 15% of patients

Those statistics are coherent with the number published by the Office for National
Statistics of the UK [34].

Smoking intensity variable informs of the smoking habits consumption for smokers or
ex-habits for ex-smokers. Units is in cigarettes units per day. We provide distribution
of the variable per group:

Figure 3.5: Smoker intensity modality frequency

For ex-smokers, we provide distribution of duration (in years) since smoke quitting:
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Figure 3.6: Smoker quit duration modality frequency

Body Mass Index

Body Mass Index is a quantity that allows to estimate the corpulence of a person. It is
calculated based on height and body weight. Distribution of the BMI in our database
is the following:

Figure 3.7: BMI modality frequency

This distribution is coherent with UK statistics [10].

Diabetes

For patients having diabetes, we provide statistics on modalities frequency of diabetes
type and prescription of insulin treatments. There are 2 main forms of diabetes, type
1 diabetes and type 2 diabetes, both characterized by chronic hyperglycemia. Type
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1 diabetes occurs in young people and often begins in childhood. It is caused by an
autoimmune destruction of the pancreas which no longer produces insulin. The cause
is poorly known and there is currently no possible prevention. Affected people are
therefore dependent on insulin, which must be administered by injection. As for type
2 diabetes, which accounts for 90% of diabetes cases, it occurs later in life. It is mainly
due to a state of insulin resistance and is associated with overweight. Insulin injection
for type 2 diabetes in not always necessary. In our data set, 13.2% of patients with type
2 diabetes have an insulin prescription. Those statistics are coherent with the general
UK population [5].

Figure 3.8: Diabetes type frequency Figure 3.9: Insulin frequency

Stroke

For patients having had a stroke, we are provided with a group stroke variable informing
on the severity of the event. The higher the group the more severe the event was.

Figure 3.10: Stroke group frequency

Distribution of alcohol and blood pressure variables are provided in Appendix 8.2.
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Correlation

In the chart below, we provide visual representation of the correlation within our
explanatory variables. Correlation can give insights in the structure and relationship
existing in our variables. It assesses the linear relation between two variables. If positive,
the two variables tend to increase together, if negative then one tend to increase
when the other decreases. A correlation close to zero means that there is no linear
relation.

Figure 3.11: Correlation within explanatory variables

We can see that we have some correlated variables, which can be explained by two
main reasons:

First, different level of precision of the same information: for example, several variables
refer to diabetes: bin0_diabetes informs whether the patient has diabetes, while variable
dur_diabetes inform the duration since diabetes diagnosis and insulin informs whether
the patient is prescribed insulin. Similar explanation applied to stroke related variables:
TIA, CVA and stroke group.

Second, one comorbidity may be caused by another, therefore we find significant
correlation between the two variables. For example, some cases of retinopathy (damage

23



to the retina of the eyes) may be caused by diabetes. This is why some correlation
between those two variables appear. We also see that Diabetes_TYPE2 is correlated
by numerous variables such as BMI, hypertension and stroke. There is also a causal
relationship between those variables, as a high BMI may cause type 2 diabetes and
hypertension. Another example is that hypertension and diabetes are risk factors for
strokes, as shown by Chen al. in this paper [11]. Similar comments can be made about
smoker status and COPD (Chronic Obstructive Pulmonary Disease) variables.

One should keep in mind these strong correlations when calibrating a model and when
analyzing a model output, such as variable importance and significance (p-values).
Indeed, correlation can add instability when estimating the parameters of the model
(GLM for example). There are different ways to deal with correlated variables. When
variables are correlated due to different levels of precision of the same information,
one can choose to retain only the most relevant variable using regularization. Indeed,
regularization penalizes the size of parameters fitted, and therefore can discard some
redundant variables. In one of the following chapters, we will explain and apply the
LASSO penalization when fitting a GLM. As we said, variables may also be correlated
because there is a causal relation of one on the other, such as high BMI may cause
on type 2 diabetes. Or, if there is a causal relation with a third variable, for instance
a part of hypertension and type 2 diabetes correlation can be due to the fact that
high BMI engender those comorbidities. For these cases, interaction terms between
those variables can be considered to account for aggravating risk when formulating
the model. Interaction terms can enable to consider the cumulative impact of several
variables, as we will do during our study.
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Chapter 4

Estimation of raw death rates

The goal of our study is to estimate the mortality level used for life expectancy and
annuity pricing calculations. This study focuses on death rates modeling. We will
use and challenge models that predict mortality rates base on explanatory variables.
In this chapter, we focus on the theoretical framework and the way we deal with
censorship and truncation. In the following chapters, we will apply different models to
estimate mortality and construct life tables.

4.1 Methodology

4.1.1 Lexis diagram

We rely on observed mortality to estimate the mortality rates. Usually, we observe
a population during a certain period of time, which we will call study period. We
represent those observations using the Lexis diagram.

A Lexis diagram is a two-dimensional diagram used to represent follow-up time and
events, in our case death events. Calendar time is represented on the horizontal axis,
while age is represented on the vertical axis.

Figure 4.1: Lexis diagram of death events of observed population

This representation helps to visualize the path of each observation. Each line represents
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the observation of an individual during the study period. The beginning of the line is the
starting observation date, and the end of the line corresponds to the end of observation
date. In this way, the length of the line represent the observed survival. The cross
symbol represents a death event that causes the end of observation, the dot symbol
represents the end of observation caused by any event other than death.

As already stated, we focus only on level risk and put the trend risk aside. Therefore,
we make the hypothesis that mortality is stable over time within our study period.
Thus, we choose to not take into account the calendar year impact. It corresponds to
the actuarial practices, and we believe it is an acceptable approach as we have a limited
period of study of only 6 years. Thus, the mortality trend should not bias our results.
Graphically, in the Lexis diagram, this is equivalent to consider cells by age only as
depicted in the following chart:

Figure 4.2: Hypothesis of null improvement trend within the study period
years

4.1.2 Mortality rate

Theoretical mortality rate qx

As a reminder, a mortality rate, or death rate, qx is the probability for someone alive
at an exact age x to die during the year. Mathematically,

qx “ PpT P rx, x ` 1q | T ě xq

with T the random variable of the age at death.

In this chapter, we show how one can estimate these probabilities from the survival
observation. In a second stage, we will construct models that predict these probabilities
for an individual with characteristics X:

qxpXq “ PpT P rx, x ` 1q | tT ě xu X Xq

Mortality rate estimation q̂x

An intuitive way is to compute the total number of deaths over the number of persons
observed at age x as follows.

q̂x “
dx
lx
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with q̂x the empirical death rate at age x, and dx the number of death observed at
age x and lx the total number of observation. However, this approach is biased in case
of truncation or censorship. Therefore, we will use what we call initial exposure Ex to
replace lx to correct for this bias. The exposure is defined in the next section.

4.2 Exposure to risk

4.2.1 Incomplete observations - censorship and truncation

As depicted in the Lexis diagram, we are facing two problems:

• Truncation - Let’s consider the persons that turn 67 in 2014. Unless all these
persons are born on the 1st of January, some people will turn 67 during the year
and will then enter the cell midway (increments). Others, will be 67 at the start of
observation and will then turn 68 and exit the cell during the year (decrements).
Those movements across the cells creates truncation.

• Censorship - Some withdrawal can also happen. Withdrawal means that an
observed individual may exit from the study for random reasons other than death.
Those random decrements induce censorship because we do not know whether
the individual died or not at age x.

Therefore, for each individual observation, one of the following three cases may arise:

• Full observation: the individual is observed from age x to age x ` 1.

• Partial observation:the individual is only partiality observed between age x and
x ` 1

• Death: the individual dies between age x and x ` 1

In the next section, we introduce exposure Ex designed to take into account the
observation above. The idea is to calculate individual exposure based on the amount
of time each life was exposed to the risk of death at age x.

4.2.2 Initial exposure to risk

Let’s consider only the individual observed between age x and x ` 1. For each one of
this observation, denoted i, we have at our disposal:

• x ` ai age at start of observation

• x ` ti age at end of observation

• di “ 1 if a death is observed, 0 otherwise

By definition, we have the following: 0 ď ai, ai ă ti and ti ď 1.

Assuming no censorship

Assuming there is no censorship and using actuarial notations, 1´aiqx`ai is the probability
to observe a death between x and x ` 1 for an individual i.

We define Di, a Bernoulli random variable that takes value 1 with probability 1´aiqx`ai .

27



Assuming there is no censorship, and relying on the law of large number, we have
ř

i Di ÝÑ
ř

i ErDis “
ř

i 1´aiqx`ai . Thus, we have:
ÿ

i

di “
ÿ

i

1´aiqx`ai (4.1)

Including censorship

While we dealt with the truncation, now we must cover the censorship. Indeed, a part
of deaths haven’t been observed due to censorship. The idea is to add all these missed
deaths in the censored observations. When censorship occurs, we have ti ă 1 and di “ 0,
the probability to have a death observed during the censored period is: 1´tiqx`ti . We
correct equation 4.1 by adding to the observed death the expected missed deaths:

ÿ

i

1´tiqx`tip1 ´ diq `
ÿ

i

di “
ÿ

i

1´aiqx`ai (4.2)

By notation, we have 1´tiqx`ti “ 0 when ti “ 1.

Balducci hypothesis

In order to solve the previous equation, we must make an assumption about the
mortality on each age interval rx, x ` 1q, we consider Balducci’s hypothesis [4].

Balducci hypothesis : mortality rate for the partial year is proportional to the
rate for the full year

1´tqx`t “ p1 ´ tqqx, @t P r0, 1s

Injecting this in the equation 4.2 allows us to obtain:
ÿ

i

p1 ´ tiqqxp1 ´ diq `
ÿ

i

di “
ÿ

i

p1 ´ aiqqx

After a few arrangements we have:

qx “

ř

i di
ř

ip1 ´ diqpti ´ aiq ` dip1 ´ aiq
(4.3)

This obtained mortality estimator is recommended by the French Institute of Actuaries
in this guidance paper [4].

Initial exposure to risk

The equation 4.3 gives us an estimation of mortality rates at age x. The numerator is
the total number of deaths observed at age x denoted dx and the denominator is called
initial exposure, and it is denoted Ex.

Ex “
ÿ

i

p1 ´ diqpti ´ aiq ` dip1 ´ aiq
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In practice, we compute the exposure for each individual at each observed age. We
obtain pseudo observations that we will use in our modelling. The computed exposures
allow us to get around the censorship and truncation problem and also allows applying
classic models.

4.3 Application
To deal with truncation and censorship in our database, we apply the previous methodology
and choose to discretize our patient-level observations by age. By computing exposures
for each individual at each observed age, we create pseudo observations that correspond
to one age of one patient per row.

Transformation from patient-level rows to pseudo observations

To apply the initial exposure approach, we have to discretize our patient level database
presented in the previous chapter to pseudo observation (as explained in the Initial
exposure to risk section).

We specify that we will keep the train/test binary variable we randomly imputed to
each patient (in order to have a 70%/30% train/test division). For incoming model,
this will prevent us from having pseudo-observations of the same patient that falls in
the train and test pseudo observation data sets.

We show here the two first patient rows transformed into pseudo observation. Each
row contains the observation of one patient at one age. Death status is set to 1 only at
age of death (if applicable).

Figure 4.3: First two patients transformed to pseudo observation to apply
exposure to risk approach

As we can see, transformation into pseudo-observation has a cost in terms of the
increase in the number of rows. Our produced pseudo-observation database contains
therefore 4,708,748 rows.
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Computing raw mortality rates

After having transformed our database to pseudo observations, we use the package
scor_survival in Python to draw raw mortality rates and exposure:

Figure 4.4: Raw death rates and initial exposure by age

The histogram shows initial exposure per age, and the curve gives the raw death rates
per age. Those raw mortality rates are coherent with the UK mortality rates available
in the Human Mortality Database.
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Chapter 5

Construction of reference life tables by
age, gender and socio-economic
group

Before constructing models for enhanced life annuities product, we first construct life
tables that can be used for classic annuities pricing and valuation. For these traditional
products only limited information are available such as age, gender and socio-economic
class (based on postcode address) of the annuity buyer. Therefore, we construct life
tables that reflect the mortality according to these variables. In addition, due to
operational limitations, only a limited number of life tables can be used in practice.
Considering a life table per gender and mosaic socio-economic classes will lead to a too
large number of tables. We will provide an approach to aggregate the socio-economic
classes in a relevant way with minimum mortality prediction power loss.

In the first section, we construct life tables per gender, allowing us to introduce the
overall mortality modelling approach. To achieve this construction, we consider GLM
and GAM models. We provide a comparison between the performance of the two
models. Afterwards, we construct life tables using the mosaic socio-economic variable
as well.

In the next chapters, we will deal with enhanced annuities, we will use the mortality
rates constructed in this chapter as reference tables in our mortality models. The idea
is to rely on these reference mortality curves to construct more complex models that
encompass comorbidity variables.

5.1 Life tables by age and gender
We apply a parametric model to construct the life tables from the crude mortality rates
obtained in the previous chapter. One can notice that the raw mortality rate curve,
plotted in Figure 4.4, is relatively smooth, thus one could use them directly. Our goal
here is to introduce the modelling approach that would take on its full meaning when
introducing the mosaic socio-economic groups in the next section.

Therefore, as a first step, we here construct life tables per gender in order to compare
the performance of GLM and GAM models.
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5.1.1 Methodology

Binomial distribution assumption

To apply parametric models, we must specify a distribution for the number of deaths.

To fix the ideas, let’s consider a group of observations sharing the same characteristics
X. Let lx denote the number of observations at age x and Dx the random variable
capturing the number of deaths occurred at this age.

A binomial model appears to be the natural approach, as a binomial distribution is
a set of lx independent Bernoulli trials, with for each trial predicts a death (1) or a
survival (0) based on the probability of death qxpXq. With qxpXq the death probability
at age x for individual with features X.

However, as described in the previous chapter, we cannot use directly the number of
observations lx due to truncation and censorship in our survival observations. Therefore,
as proposed by Delwarde and Denuit in [12], we consider instead the estimated initial
exposure Ex. Indeed, the exposure Ex can be seen as the number of observations
adjusted to deal with censorship and truncation.

We obtain the following mathematical representation:

Dx „ BpEx , qxpXq q (5.1)

Estimation using GLM model

Now, let’s consider a use General Linear Model to explain and predict mortality. As
proposed by Delwarde and Denuit[12] we consider:

Dx „ BpEx , logit
´1

pβXq q

with logit : x ÞÑ logpx{p1 ´ xqq the canonical link function, β “ pβ0, ..., βpq the model
parameter and the features X “ p1, X1, ..., Xnq.

We are interested in the univariate response variable Y “ logit´1
pβXq, it is qxpXq, i.e.

the mortality at age x for an individual with characteristics X. The expected value of
Y of the predictor variables is given by:

logitpErY | Xsq “ β0 ` β1X1 ` ¨ ¨ ¨ ` βnXn

The parameters β can be estimated by solving the maximum likelihood of the model
based on the death observations. We can rely on R package stats to solve this optimization
problem. The algorithm maximises the Binomial log-likelihood :

logpLq “ logp

n
ź

i“1

PpDi “ diq q

“ logp

n
ź

i“1

ˆ

Ei

di

˙

qpXiq
dip1 ´ qpXiqq

Ei´di q

“

n
ÿ

i“1

di logpqpXiqq ` pEi ´ diq logp1 ´ qpXiqq ` constant
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We note pXκqκ the list of all possible inputs X. We set dκ “
ř

i,Xi“Xκ
di and Eκ “

ř

i,Xi“Xκ
Ei in order to group observations with identical covariates Xκ. Maximizing

the previous equation is equivalent to maximize:

logpLq “
ÿ

κ

dκ logpqpXκqq ` pEκ ´ dκq logp1 ´ qpXκqq

“
ÿ

κ

„

dκ
Eκ

logpqpXκqq `

ˆ

1 ´
dκ
Eκ

˙

logp1 ´ qpXκqq

ȷ

Eκ

From previous equation, we notice that solving optimization of model (5.1) is equivalent
to solving the model predicting as target variable dκ

Eκ
with weight variable Eκ.

As a results, in practice we aggregate our pseudo-observation database and use R
package stats to fit a binomial model with target variable the raw mortality rate of
each group (dκ{Eκ), and we put as weight parameter the sum of exposure of the group
(Eκ).

For our application, we consider only the Age and Gender. We have X1 “ 1 if Female,
X1 “ 0 otherwise, plus for age X2 “ x. We allow for intercept and an interaction
between age and gender, therefore we have the following relationship:

logitpqxpXqq “ β0 ` β1X1 ` β2X2 ` β3X1 ¨ X2 ` ϵ

Estimation using GAM model

The main benefit of General Additive models (GAM) is to relax the linear relationship
between the explanatory variables and the variable of interest. Thus, these models are
better to capture the non linear effects, such as the effect of age on mortality, in our
problem.

Indeed, GAMs are an adaptation of GLMs that allows to model a non-linear impact as
it gets rid of the restriction that the relationship must be a weighted sum, and instead
assumes that the outcome can be modelled by a sum of arbitrary functions (parametric
or not parametric) of each feature.

As for GLMs, a GAM relates a univariate response variable, Y , to some predictor
variables X and an exponential family distribution is specified for Y . As in the previous
subsection, we consider the binomial distribution along with a canonical link function
logit. The form of the GAM is the following:

Y “ logit´1
pβ0 ` f1pX1q ` ... ` fmpXmqq ` ϵ

with β0 the intercept and fi some function to determine.

The expected value of Y to the predictor variables is given by:

logitpErY | Xsq “ β0 ` f1pX1q ` ... ` fmpXmq

The functions fi may be functions with a specified parametric form (for example a
polynomial, or an un-penalized regression spline of a variable) or may be specified non-
parametrically, or semi-parametrically. This flexibility can relax assumptions on the
actual relationship between response and predictor and provide better fits to data than
purely parametric models. However, a drawback of GAMs is the loss of interpretability
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because we are not provided with a single β parameter. In our study, we will use splines
that combine several advantages. Details on B-splines and their fitting can be found in
Appendix 8.4.

In the same way that we fitted different coefficients per gender in the GLM, we fit an
intercept and a spline for each gender, in order to allow to capture different impact of
age per gender.

5.1.2 Results

We display here analysis of the fitted models.

Fitted logit-mortality rates

Figure 5.1: Mortality rate per age and gender for GLM and GAM (logit
scale)

The GLM curve is a straight line, while the GAM curve is slightly curved. We provide
in Appendix 8.4 an analysis of the fitted splines.

Standardized Mortality Ratio

The standardized mortality ratio (SMR) is the ratio of the number of observed deaths
over the number of deaths that would be expected if the study population had the
same age-specific rates as the standard population.
For each age band and gender, we compute SMR the following way:

SMR “
Actual deaths

Expected deaths

The expected deaths for an age-band and gender are obtained by simply summing the
exposure multiplied with predicted mortality rates of the model.
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If the model captures correctly the mortality, we would expect an SMR close to 1.
We computed the SMR on the test dataset and show the results in the following
chart:

Figure 5.2: SMR per Gender and Age band obtained for GLM and GAM

As we can see, the GAM has captured correctly the impact of age for each gender.
Indeed, confidence interval ranges of the SMR include 1. However, we see that the
GLM underestimates the mortality between 65-69 years old, especially for women, and
between 90-99. It also overestimates the mortality between 70-79 years old, especially
for women.

This analysis shows that a GAM model is more appropriate than a GLM to capture
the shape of mortality with age. In the next section, we will add mosaic socio-economic
information to construct life tables, using GAM models.
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5.2 Life table by gender and socio-economic clusters
Now that we have fitted our reference model on age and gender, we want to use an
additional explanatory variable to explain mortality. In this section, we present how we
integrated a socio-economic variable to explain mortality and obtain our final reference
life tables.

5.2.1 Mosaic : UK indicator of socio-economic group

Mosaic is an indicator used in the UK for geo-demographic classification. This classification
in done by Experian, a consumer credit reporting company. For each postcode, the
company provides a classification, giving information on the socio-economic class the
postcode resident is more likely to belong to. Experian usually sells their classification to
companies that use them for retail purposes. Having the socio-economic information of
a postcode allow them to be very specific with the content and tone of their campaigns
and better fit their target group’s preferences.

Different classification exists. Our data provided the type 2009 classification, which is
composed of 68 categories. We provide the mosaic classification meanings in Appendix
8.7.

5.2.2 Descriptive statistics

Mosaic information is provided for 90% of the exposure of our database. We assume
that a patient with no mosaic information available is independent of their mosaic type,
i.e. observations with missing mosaic are proportionally distributed over all classes of
mosaics.

In the chart below, we provide total exposure (left axis) and raw mortality rate (right
axis) of each mosaic class.

Figure 5.3: Distribution of exposure and mortality rate across the mosaic
types
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We notice that mosaic number 99 has a very high mortality rate. This is explained by
the fact that mosaic 99 regroups nursing homes. We can also see that mosaics 1 and
33 have very low exposures.
The difference in death rates are mainly explained by the differences in age and gender
distribution of the mosaic populations. However, this is not the only effect. Socio-
economic factor have an important impact on mortality rate.

To capture the impact of mosaics controlling by age and gender, we will use the
previously fitted GAM model.

5.2.3 Impact of mosaic type on mortality

SMR by mosaic type of fitted GAM model on age and gender

To visualize the impact of socio-economic mosaic type controlled by age and gender, we
compute the SMR per mosaic using the prediction of the previous GAM model fitted
on age and gender.

The Standardized Mortality Ratio of mosaic i is computed as follows:

SMRi “
di

δGAM
i

with di the number of deaths of mosaic i and δGAM
i the predicted number of deaths of

mosaic i using the GAM model:

δGAM
i “

ÿ

jPMi

Ejq
GAM
j

with j all the pseudo-observations belonging to mosaic i.

The produced plot is the following:

Figure 5.4: SMR per mosaic type with expected based on previoulsy fitted
GAM

The visual inspection of the chart indicates that some mosaic class have a significant
lower or higher mortality than the one captured by the GAM model. As we controlled
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for age and gender, these differences are not due to the age and gender. In other words,
the mosaic has an impact on mortality. In the next section, we show how to construct
life tables by socio-economic group.

Modeling the impact

A straightforward way to capture the additional impact of mosaic type on mortality is
to enhance the model introduced previously by adding a parameter β that will capture
the mosaic impact on mortality, as follows:

logitpErY sq “ αF ` αM ` fF pAgeq ` fMpAgeq `
ÿ

i

βi1tMosaic_type““iu

We can also rely on the previously fitted GAM model that provides death rate by age
and gender, which we will note qGAM

x . As a reminder, we have:

logitpqGAM
x q “ αF ` αM ` fF pAgeq ` fMpAgeq

We can keep the previously fitted intercepts and splines for our model with mosaic
types:

logitpErY sq “ logitpqGAM
x q `

ÿ

i

βi1tMosaic_type““iu

Therefore, we fit a binomial GLM model on mosaic indicators using as offset logitpqGAM
x q.

We specify that we do not want an intercept because it is already included in the
qGAM
x .

Thanks to this simple and rapid approach, we obtain a predicted mortality curve for
each mosaic. However, it is not the retained approach as explained in the following
subsection.

5.2.4 Clustering

For business constraints and better understanding, we want to reduce the number of
class of mosaics. Therefore, we will have to cluster mosaic types into a lower number
of groups. Several questions arise, such as: How many clusters should we choose? How
can we cluster them in a relevant way?

These are not so easy questions, as we do not have at our disposal a way to measure how
similar two mosaics are in term of mortality risk. The mosaic number does not provide
any indication on mosaic definition proximity. In other words, the mosaic variable
modalities are not ordered. In addition, because there are 68 mosaics (mosaic
variable has 68 modalities), this creates a very large number of possible combinations
when considering clustering mosaic modalities. Indeed, let’s say that we aim to create
5 groups, then there would be more than 10 millions ways to aggregate the 68 mosaics
into 5 clusters (

`

68
5

˘

“ 10, 424, 128). Therefore it would not be feasible to create clusters
through testing all possible combinations. We present next the clustering methodology
we adopted to solve our problem.
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Clustering methodology

We aim to build a model with high explanatory power but using fewer categories
of mosaic types. To do so, we will rely on an agglomerative hierarchical clustering
approach. This means that, at the start of the clustering process, we will consider
each mosaic type as its own cluster. We will then merge two clusters together at each
iteration until having only two clusters left.

We consider a target function that reflects the performance of the model while penalizing
on the complexity of the model (here we want to penalize on the number of clusters).
Therefore, we consider as target function the Akaike information criterion (AIC).
The AIC takes into account the log-likelihood of the model and the number of fitted
parameters.

AIC “ 2k ´ 2 logpLq

In our case, L is the likelihood of our binomial model.

This definition of the AIC means that the lower the AIC value the better. Therefore,
we will seek to minimize the AIC at each iteration.

The proposed methodology is the following :

1. For each combination of two clusters, we temporarily merge them and then fit
the binomial model.

2. We collect AIC of each of the fitted models and merge the pair of clusters with
the lower AIC.

3. We then reproduce this procedure using the updated clusters until we have only
two remaining clusters.

Application and results

We implemented this methodology, which is computationally intensive. Indeed, for each
iteration k, we have to fit a GLM for every combination of 2 clusters in the 68 ´ k left
clusters. As there are 67 iterations, we have in total

ř66
k“0

`

68´k
2

˘

models to fit.

After applying this methodology, we get at each step k a set of clusters, which contains
68´k different classes. For each set of those clusters, we fit a GAM model to construct
different splines for each gender and cluster. This allows us to take into account the
mortality characteristics of socio-economic group. We store the AIC of the model fitted
on each set of clusters and plot them in a graph with on the x-axis the number of classes
of the corresponding set of clusters the model was fitted on. We do not plot the results
for number of clusters over 30 as y scale becomes too wide.
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Figure 5.5: AIC of GAM model using gender and mosaic clusters found at
each step k

The AIC graph shows that based on this metric, the optimal number of clusters is 7.
We show in Appendix 8.8 the final 7 clusters and the name assigned to each of the
cluster based on the description of the mosaic types they regroup.

5.2.5 Final life tables by gender and socio-economic cluster

Now that we have a reasonable amount of socio-economic groups, we can construct a
set of mortality table by gender for each cluster. The produced mortality curves are
represented here. In addition we provide logit-scale of the curves for more readability
:

Figure 5.6: Fitted life tables per gender and socio-economic cluster using
binomial GAM model
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Figure 5.7: Fitted life tables per gender and socio-economic cluster using
binomial GAM model with logit scale

The pink curve is the mortality of cluster G composed by only mosaic type 99 which
is, as said previously, a specific mosaic type containing nursing homes. This is why we
obtain very high mortality rates in this cluster.

We also notice that due to limited data, confidence intervals are larger between ages
95 to 100. To extend mortality rates, we will apply linear interpolation at high ages
using UK national life table on ages from 95 to 100. We will explain this step further
in the next chapters.
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Chapter 6

From standard life tables to enhanced
mortality rates using GLM and
Machine Learning models

In the previous chapter, we created life tables per age, gender and mosaic/socio-
economic cluster. In this chapter, we rely on these tables to reflect the annuitant
mortality by using the comorbidity variables.

Additionally, we are facing the business constraints to construct an interpretable model.
Indeed, to meet regulation constraints, the insurer must be able to justify the prices
applied. As annuity prices depend on model output, to justify variations in prices, one
need to understand the variation in model predictions. As an interpretable model, we
selected a GLM model that we will introduce in the following section.

Moreover, from the underwriting operational perspective, we also want a model that
considers a limited number of variables. Indeed, the higher the number of variables
considered for the mortality prediction, the bigger the amount of information that the
insurer would need to collect during the application process. We selected the GLM-
Lasso model in order to reduce the complexity and the number of variables used in the
final GLM model.

Finally, we would like to check if our model is as efficient as a Machine Learning one.
Therefore, we will also consider a Gradient Boosting Model (GBM) considered to be
among the most powerful models.

This chapter will focus on the theory behind each model and the application and
fitting on our dataset. The next chapters will focus on assessing and comparing the
performance of each model.

6.1 Modelling enhanced life annuities GLM

6.1.1 Model choice and inclusions of reference rates

Due to the peculiarities of our database and for technical constraints, we will use
Poisson model as an approximation of Binomial model in this section. Indeed, incorporation
of truncated data in Binomial models is limited while Poisson form allows to take
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exposure into account through an offset term. We provide further explanations in
Appendix 8.4.

In the previous chapter, using GAM we constructed references rates qGAM
x,g,c that vary

by age x, g and mosaic cluster c.

Inspired by Cox’s proportional hazard model [27], we assume that the mortality rates
are:

qxpXq “ qGAM
x,g,c exppXβq

with X the medical risk factor variables and β the unknown parameters to be fitted.

In this approach, we imply that mortality of individual with characters X is proportional
to the references tables, whatever the age. This is a strong assumption well know not
to be verified. However, we can extend our model by adding the age (and gender)
to the explanatory variables X. This makes sense, as some comorbidity may impact
differently the mortality based on age.

Assuming the death numbers Dx is Poisson distributed, one would need to fit the
following model:

Dx „ Pp qGAM
x,g,c exppXβq ¨ Ex q

This formulation results in explaining death status Dx with link function log and with
offset logpqGAM

x,g,c q ` logpEq.

Alternatively, based on the relational models, introduced by Hannerz [15] and used by
Delwarde and Denuit in mortality prediction [12], we could build a model relying on
these reference rates as follows:

logitpqxpXqq “ logitpqGAM
x,g,c q ` Xβ

Assuming that Dx is binomial distributed one would need to fit the following model:

Dx „ BpEx , logit
´1

plogitpqGAM
x,g,c q ` Xβq q

This formulation results in explaining death status D with link function logit and with
offset logitpqGAM

x,g,c q.

6.1.2 Classic GLM

As described previously, with GLM, we model a relationship between the target variable
Y et covariates X. Our model has the form of a linear combination between the
covariates X that predicts Y . As we do not know the exact form of the relationship
between our input vector and our target variable we must make an assumption.

We will establish our model based on all variables available, as well as any reasonable
non-linear transformation or interaction effects. This transformation of input variables
is called features engineering. As GLM are not able to automatically capture non-linear
or interactions effect this step is essential.
For the feature engineering, we will rely on descriptive statistical analysis and medical
knowledge in order to set a model that encompasses all reasonable possible effects. In
the next section we will apply a penalization on the fitted coefficients in order to get
rid of non-relevant terms.

A lot of our variables are binary and do not require non linear transformation. However,
we have some continuous variables such as BMI, SBP, duration since quitting smoking
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or intensity of alcohol consumption. We analyse raw mortality rates of BMI and
SBP:

Figure 6.1: Raw mortality rate per BMI groups

Figure 6.2: Raw mortality rate per SBP groups

The graphs above show a polynomial relationship with mortality rates, and therefore we
will fit parameters on quadratic and cubic transformation of those variables. Similar
conclusions can be drawn from the analysis of duration since quitting smoking and
alcohol consumption variables (see graphs 8.9 8.10 in Appendix). Therefore, we will
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add into our model quadratic or cubic effects for BMI by adding the following created
variables: BMI, BMI2 and BMI3.

We also create interactions of variables which are known to have a compounding
effect. We relied on knowledge of SCOR medical experts to draw a list of variables
having an aggravating impact. For example, an interaction is considered between
the smoking status and blood pressure (SBP), because a causal relationship shows
that smoking can increase blood pressure leading to potential malignant cases of
hypertension [26]. We underline the fact that some correlated variables we noticed
in chapter 3 are here considered as interaction terms, for example smoking status with
COPD comorbidity. Also, numerous interactions between age and comorbidity variables
are specified. Indeed, we believe that the increase of mortality risk of some comorbidities
can vary with the age of the individual. Following the same reasoning, socio-economic
clusters were featured with main comorbidity variables (diabetes, COPD and MI 1), to
capture potential differences in mortality risk impact depending on one’s social class.
Here are some other examples of interactions considered based on medical expertise:
COPD and smoking status, stroke and smoking status, insulin and diabetes, retinopathy
and diabetes, heart failure and cardiomyopathy, bronchiectasis and COPD, fev1fvc and
COPD, etc.

Taking all those effects into consideration, we end up with a complex model that
requires 143 coefficients to be fitted. We provide in Appendix 8.4 part of the results,
however for confidentiality matters, we randomly deleted some rows.

Because a reference life table is included as base prediction, we chose to put aside
the intercept term. Indeed, the average mortality should be already captured by the
reference life table, making the intercept less relevant.

6.1.3 GLM-Lasso

Because of the complexity and the high number of fitted terms in our model and the
existing correlation between some variables, we apply a GLM-Lasso model, adding a
penalization on the L1 norm of the fitted coefficients. L1 penalization has the faculty
to force some coefficients to zero and therefore reduce the number of explanatory
variables.

The penalization is added when solving the maximum likelihood L of the model :

β̂ “ argmax
β

rL ` λ
p

ÿ

i“1

βis

with L the log-likelihood of our model and λ an arbitrary positive value reflecting the
degree of penalization and therefore the resulting non-zero parameters.

Because we fit a Poisson model, we have

L “ logp

n
ź

i“1

ŷi
yi

yi!
e´ŷiq

with yi the true value and ŷi the predicted value of the model.
1Myocardinal infarction
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Usually, λ is chosen by grid-search maximising some target function, in our case we
will focus on Poisson deviance. We use the cv.glmnet function from glmnet R package
to select the best λ.

The cv.glmnet function operates a K-fold cross validation, meaning the data is divided
into K subsets and K models are then trained on K-1 folds and validated on the last
fold. Applying cross validation enables to avoid overfitting risk when selecting the best
hyperparameters.

For each penalization λ and for each fold k, β is maximised, giving β̂λ,k and the Poisson
deviance is calculated. Residual deviance D is given by

D “ 2pLsat ´ Lλ,kq

with Lsat the log-likelihood of the saturated model, meaning of a model that fits the
data perfectly, and with Lλ,k the log-likelihood of the fitted model on fold k with
penalization λ. Because we use Poisson distribution, this gives :

D “ 2plogp

n
ź

i“1

yyii
yi!

eyiq ´ logp

n
ź

i“1

ŷi
yi

yi!
eŷiq

“ 2
n

ÿ

i“1

pyi logp
yi
ŷi

q ´ pyi ´ ŷiqq

The mean Poisson deviance on the validation set of the K fitted models for each λ is
represented on the following output:

Figure 6.3: Grid search on GLM-Lasso λ parameter: Poisson deviance
evolution using cross validation

The vertical lines show the locations of λmin and λ1se, which are two common choices
for λ. λmin is the penalization that results in the best out-of-sample performance of the
model. λ1se is the largest penalization within 1 standard error of λmin.
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We see that in our case, λmin does not reduce the number of coefficients. Therefore
we will choose λ1se as penalization. This penalization reduces the number of fitted
parameters from 147 to 77.

Also, we see that a logpλq of -6.5 would enable to reduce the number of parameters to
41, without too much increase in deviance. This is why we will also fit a model with
this penalization.

Therefore we fit a first GLM with a penalization of λ1se, which we will call model
GLMNet_long and a second GLM with a penalization of λ “ e´6.5 which we will call
model GLMNet_small.

Model name Penalization Number of
fitted coefficients

Number of
variables used

GLM 0 143 38
GLMnet_long λ1se= 8.51e-05 77 32
GLMnet_small 1.50e-03 41 19

Table 6.1: Summary table of the GLM models fitted

We provide in table 8.1 the list of variables used by model and in 8.4 part of the fitted
coefficients.

6.1.4 Explaining mortality rate differences with GLMs

In this section, we will take advantage of the interpretability power of GLM models to
explain the predicted mortality rates deviation from our GAM life tables. We will also
show how to explain the differencies of two annuitants’ mortality. The linear form of
GLMs will enable us to decompose mortality rates by risk factors.

As an example, we will compare two applicants having age 65 and requesting underwritten
annuities. The first applicant A has had a Type 2 diabetes for 10 years and the second
applicant B suffers from Chronic Obstructive Pulmonary Disease (COPD).
In our example, both applicants are females belonging to mosaic cluster F. They have
a BMI of 25, an SBP of 125, are smokers with consumption 20 cigarettes per day and
alcohol consumption 10 glass per week. Applicants have no other comorbidities.

We use our trained GLMnet_small model to predict mortality curves. Because we will
perform an extrapolation at high ages, we focus only on mortality under age 95.

We plot the predicted mortality rates for each annuitant A and B, as well as mortality
rates of GAM life table of gender female and mosaic cluster F which we will refer to
as ref:
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Figure 6.4: Predicted mortality rates for applicants A and B

As we can see, both annuitants have higher mortality rates than the average reference
of their gender and mosaic cluster. In order to explain those differences, we use the
linear form of the GLM.

Explaining deviation from reference mortality rates

We focus here on explaining the extra mortality of annuitant A compared to the
reference mortality curve. We recall that qxpXAq “ qGAM

x,gA,cA exppβXAq, with x the age,
gA the gender of applicant A, cA their mosaic cluster and XA their medical risk factors.
Thus when we focus on the differences of the two predicted mortalities we have:

qxpXAq

qGAM
x,gA,cA

´ 1 “ exppβXA
q ´ 1

« βXA

We see that the increase in mortality rates can be easily approximated by βXA.
This allows us to easily decompose the variation of the predicted mortality rates by
each medical risk factor Xi. We plot in the following graph the coefficients βiX

A
i (we

regrouped all terms related to diabetes together, as well as for smoking, bmi and sbp
for more clarity):
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Figure 6.5: Decomposition of extra mortality by medical risk factors for
annuitant A

We can see here that diabetes risk factor and smoking habits increases mortality rates
of applicant A. We see however that their "good" bmi and sbp metrics decreases it. We
can also notice that the impact of those medical risk factors decreases with age.

Explaining mortality rates difference between two annuitants

We are now interested in explaining the differences in mortality curves of applicant
A and B. We recall again that qxpXq “ qGAM

x,g,c exppβXq, thus when we focus on the
differences of the two predicted mortalities we have:

qxpXAq

qxpXBq
´ 1 “ exppβpXA

´ XB
qq ´ 1

« βpXA
´ XB

q

As βpXA ´ XBq “
ř

i βipX
A
i ´ XB

i q, the total differences in mortality is obtain by
summing βipX

A
i ´ XB

i q that reflects the contribution of risk factor i.
We plot βipX

A
i ´ XB

i q such as XA
i ‰ XB

i :
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Figure 6.6: Detail on βipX
A
i ´ XB

i q values

Aggregating by medical risk factors, we get:

Figure 6.7: βipX
A
i ´ XB

i q values per comorbidity

As we can see, for both comorbidities diabetes and COPD, extra mortality risk decreases
with age. We can also observe that COPD risk is higher at age 65 than diabetes, however
it decreases with age faster than diabetes.
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6.2 Modeling enhanced life annuities using a Machine
Learning model

Now that we have fitted standard GLM models, we want to fit a Machine Learning
model in order to compare predictions. We believe that an ML model could help
detecting impact of explanatory variables that we did not take into account in the GLM.
Indeed, ML models have the benefit not to need to have a primarily idea of the impact
shape of explanatory variable nor the pertinent variables interaction. The drawback of
course is the loss of interpretability of those so called "black box" models.

We attempted several Machine Learning models, however we were limited due to the
peculiarities of our database. For example, random forests are not adapted in presence
of exposure, and GLMtrees were too computationally intensive to be solved. Therefore,
we will focus on Gradient Boosting Machine only.

6.2.1 Gradient Boosting Machine

Gradient Boosting Machine is an ensemble method of weak learners (decision trees in
our case). This means that is uses a lot of simple models (weak learners) in order to
make its prediction. Boosting consists in constructing those weak learners iteratively,
and adding them to a final strong model.

We can visualise the iterative construction of GBM the following way:

Iterative learning of GBM using decision trees as weak learners (source: Pal
A. [7])

The algorithm followed by GBM is the following :
Initialization : F0 “ argmincErLpY, cqs Ź Start by fitting constant value
for k=1 to K do

rk “ ´
dLpFk´1pXqq

Fk´1pXq
Ź compute pseudo residuals

fit hk on vector (X,Rk) Ź train weak learner on pseudo residuals
γk “ argminγLpFk´1pXq ` γ ˆ hkpXqq Ź Likelihood optimisation of γ multiplier
Fk “ Fk´1 ` v ˆ γkhk Ź Adding fitted weak learner

end for

Likelihood L has to be specified, depending on the assumed model (Poisson in our
case).

As for the GLM, we provide to the GBM the life table as basis prediction.
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6.2.2 Grid search

Several hyper-parameters have to be provided before fitting the GBM. We present here
some of them :

• K : the number of weak learners to construct

• v : learning rate parameter, enabling to reduce over-fitting.

• max_depth : the maximum depth of the weak learners (decision trees)

In order to determine the hyper-parameters that would enable the best model to be
fitted on our data, we run a grid search. Simple grid search consists of testing all
combination of hyper-parameters we want to test. We keep the set of hyper-parameters
providing the minimum residual deviance. Models are trained on a train set and
performance is estimated on a separate validation set in order to avoid over-fitting
effect.

We use H2O package to test the following hyper-parameter values :

Hyper-parameter Tested Values
K (n_trees) 200,500,1000,5000
v (learn_rate) 0.01,0.05,0.1,0.2
max_depth 1,2,3,4,5

Minimum residual deviance was found for the following set of hyper-parameters {K=1000,
v=0.1, max_depth=3}.

6.2.3 Sensitivity analysis

GBM is what is called a "black box" model, meaning it cannot be interpreted easily
because of the too large number of weak learners fitted. However some methods, called
sensitivity analysis, can enable to get an idea of the impact of each feature on the
model’s prediction.

Permutation feature importance

We start by showing the variables that contains the most valuable information. Permutation
feature importance measures the increase in the prediction error of the model after
having altered the values of one explanatory variable [31]. The idea is to permute
one column values and see what effect it has on the model performance. If the model
performance has dropped significantly, then the explanatory variable must have an
important prediction impact on the prediction. If the model performance does not
decrease much, then the explanatory variable does not have a strong predictive value.

The detailed process of computing variable importance is the following :
Initialization : e0 “ MSEpy, fpXqqs Ź Estimate initial mean square error
for j=1 to p do Ź Iterate on the p variables

X̃j = Perm(Xjq Ź Permute values of vector Xj

ej “MSE(y,f(X1, .., X̃j, ..., Xpqq Ź mesure MSE of prediction with X̃j

FIj “ ej ´ e0 Ź Compute relative feature importance
end for
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We estimate permutation feature importance on the test set, giving :

Most important variables in the GBM model

We notice that age is part of the most important variables, despite the fact that our
life table constructed with age, gender and cluster was provided as basis prediction.
This means that these variable must have an additive impact once interacted with
comorbidity variables. GLM model should therefore include interaction terms of age
with comorbidity variable. We note that our feature engineering already takes into
account a lot of those interactions.

Partial dependence plots

The partial dependence plot shows the marginal effect of one feature on the predicted
outcome. It can give insights of the relationship shape of a feature of interest on the
target variable, controlled by the other explanatory variables.

Partial dependence of a variable Xs at a given value v is given by the mean predicted
output on the test data set when setting feature Xs “ v for all patients.

We show here the ones from BMI and SBP variables.
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Figure 6.8: Body Mass Index Figure 6.9: Systolic Blood Pressure

We see that the GBM succeeds to capture the U-shape impact of BMI and SBP on
mortality rate, that we observed on figures 6.1 and 6.2. We provide additionally in
Appendix 8.11 the partial dependence plots of smoking and alcohol intensities.

Sobol indices

A domain of interest in sensitivity analysis is the possibility to detect interaction effects
between the explanatory factors. We follow the approach applied by Silvia Bucci in her
master thesis Étude et implémentation de techniques d’analyse de sensibilité dans les
modèles de tarification Non-Vie. Application à la tarification à l’adresse. [32], in which
Sobol indices were used to detect interaction effects identified by complex black box
models.

Sobol indices is a variance-based sensitivity analysis. The estimation of those indices
consist of decomposing the conditional variance of the variable of interest Y with respect
to the variance of the explanatory variables X “ pX1, ..., Xdq and their combinations
of interaction terms, in order to input them in a traditional GLM model.

Mathematically, this decomposition of variance can be written as:

V arpY q “

d
ÿ

i“1

Vi `
ÿ

iăj

Vi,j ` ... ` V1,...,d

with

Vi “ V arpEpY |Xiqq

Vi,j “ V arpEpY |Xi,jqq ´ Vi ´ Vj

Vi,j,k “ V arpEpY |Xi,j,kqq ´ Vi ´ Vj ´ Vk ´ Vi,j ´ Vj,k ´ Vi,k
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and so on.

Sobol indice SXU
of the subset of explanatory variable XU , U Ă {1,...,d}, is the

percentage of variance explained by the interaction effect of the combined components
of XU .

SXU
“

VU

V arpY q

First order indices refer to the Sobol indice Si of one explanatory variable. Second order
refers to indices Si, j of pairs of explanatory variable.

By construction, the sum of all Sobol indices is equal to 1, which explained why we
can interpret Sobol indices as a percentage of explained variance. The drawback of
this method is that those indices are estimated by Monte Carlo simulations, which are
computationally intensive. Numerous attempts to evaluate second order Sobol indices
were conducted. Indeed, it would have been of value to detect possible interaction
impacts that are not yet included in our specified GLM model.

However, due to the high quantity of explanatory variables and computational limit
constraints, Sobol indices simulation results were unstable and inconclusive. To illustrate
instability in results, we show in appendix 8.13 the output of significant interactions of
two simulation of Sobol indices estimation. Research had to be dropped eventually.
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Chapter 7

Life expectancy prediction

We make the choice to focus on life expectancy, as it is a good proxy of a life annuity
value. Indeed, the present value discounted at 0% of 1 life annuity is equivalent to life
expectancy. As the difference between interest rate and escalation is low, the value of
1 life annuity is close to life expectancy.
Thus, the predicted life expectancy provides a proxy of the annuity price that could
be offered to annuitants depending on their health condition. The higher the predicted
life expectancy, the less annuity amount will be offered. It enables us to get a proxy of
the annuity price variations based on the several models constructed in the previous
chapters.

On top of our reference life tables, we have fitted four models: one GLM using all
explanatory variables, two GLMs constructed via a GLMNet using less explanatory
variables and a GBM. In this chapter, we analyse their life expectancy predictions.

We present how to compute life expectancies from the predicted mortality rates and
analyse them.

7.1 Residual life expectancy
Definition

We compute periodic life expectancies that measure the life expectancy of an individual
as if there is no evolution in mortality into the future. In other words, we solely base
our calculations on the estimated mortality rates at a given point in time.

To compute the real life expectancies, one would need to consider forecast of future
mortality evolution, i.e. future mortality trend. As this master thesis focuses on mortality
level, we choose to work with periodic life tables.

Even if periodic life expectancies doesn’t provide an accurate estimation of life expectancy,
it is an often used metric. For instance, demographers used it to compare differences
in mortality from one group of social to another, such as differences in life expectancy
between blue and white collar workers.
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Residual life expectancy calculation

We are interested in computing residual life expectancy ex at age x “ 65. Relying on
actuarial notations, one can compute the life expectancy as follows:

ex “

8
ÿ

k“0

kpx ˆ qx`k ˆ pk `
1

2
q

with

• kpx the probability of someone aged x to be alive at age x ` k

• qx`k the probability of someone aged x` k to die within the year (mortality rate
at age x ` k)

For computation ease purpose and because our model provides us with mortality
rates qx, we convert the previous equation to the equivalent form that computes life
expectancy in a descant sequence fashion:

ex “ 0.5qx ` p1 ` ex`1qp1 ´ qxq

with ex“110 “ 0.

By fixing ex“110 “ 0, we suppose that q110 “ 1. As said previously, because we want
to compute residual life expectancy at age 65, we apply this formula from x “ 110 to
x “ 65.

7.2 High Ages Extrapolation
Our database did not enable us to have enough data to estimate mortality rates at age
greater than 100. To compute life expectancy, we rely on mortality rates from ages 100
to 110 provided by the Human Mortality Database (HMD).

Human Mortality Database

The Human Mortality Database is an open source database providing death rates and
life tables for national populations [2]. HMD constructs and share reliable mortality
datasets by using death registration and census data. The dataset covers many developed
and industrialized countries. Because our database is composed of people representative
of the UK population, we will import the national mortality rates of the UK on period
that correspond to the THIN data study period, namely 2015-2018.

Linear convergence at high ages

Several technics for high ages mortality extrapolation haven been proposed. Delwarde
and Denuit provide a comparison between the several technics, considering the Belgium
national population mortality data in [12].

HMD also rely on an extrapolation method to construct the mortality data on high ages
(exceeding 90 on recent period) mortality. Their proposal is used by many researchers
and could be considered as a field standard.

Due to lack of data at high ages, our model prediction can be considered as poor on
highest ages. Indeed, because we have fewer data at high ages, confidence interval are
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wider (as we observed when plotting mortality rates of GAM life tables). It is therefore
more reasonable to combine those predicted mortality rates with national mortality
rates.

We propose to apply a linear interpolation on predicted mortality rates from ages 96
to 100 using the rates constructed by HMD as follows:

qextrapx “

$

&

%

qpredx x ă 95
p1 ´ x´95

5
qqpredx ` x´95

5
qHMD
x x P r95, 100s

qHMD
x x ą 100

We apply this interpolation to all predicted rates from ages 96 to 100 for all models:
GAM, GLM, GLMnet and GBM.

This ensures that the mortality assumption on ages 95 to 110 are consistent, whatever
model considered for ages under 95.

7.3 Analysis of computed residual life expectancy
Having performing mortality extrapolation at high ages, we compute residual life
expectancy at age 65 of all patients of our test database.

We consider only ages 65 to 68 at the start of the study period. We apply this filter on
age in order to have a representative distribution of health status of the population at
age 65. Indeed, the individual in our database that we observe at higher ages are more
likely to be in good health.

7.3.1 Average predicted residual life expectancy at age 65

As a first analysis, we compute the mean residual life expectancy predicted for each
model.

Model Female Male
GAM 21.74 19.45
GBM 21.78 19.37
GLM 21.92 19.55

GLMnet_small 21.79 19.17
GLMnet_long 21.86 19.53

Table 7.1: Mean predicted residual life expectancy at age 65 per gender

Overall, the average predicted life expectancies are similar from one model to another.
However, we can notice that it is the GBM that is the closest to the mean prediction
of the GAM reference life table. The GLM and GLMnet_long models seems to both
slightly overestimate life expectancy for male and female compared to the reference life
table.

7.3.2 Segmentation of prediction

We show here the distribution of estimated life expectancy for each model, through
box plots showing minimum, first quartile, median, last quartile and maximum:
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Distribution of predicted residual life expectancy at age 65 for each model

As expected, we can visualize here the increase of segmentation, or discrimination, of
the models that includes health status variable compared to the GAM life table model.
Indeed, we recall that GAM model does rely only on age, gender and socio-economic
data to predict the mortality.

It seems that the GLMnet_small model segments a little less than the other 3 models,
which would make sense since it has less explanatory variable and therefore is less able
to segment patients.

We provide in table 8.14 an example of some life expectancy predictions for some
patients.

To have a more accurate idea of the difference of prediction between models, we plot
for each pair of models the prediction of one model vs the second for some randomly
selected patients.
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Figure 7.1: Comparison of patients life expectancy prediction of model i vs
model j

Each point in each subplot represents one patient, with for x and y axis the residual
life expectancy at age 65 of the two models.

We notice that the GLMnet_long model is really close to the prediction of the GLM
one. However, we see that there is more difference with the prediction of the GBM
model.

We support this graphical analysis with a table summarising the mean of absolute
difference in life expectancy predictions of our models.
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GAM GBM GLM GLMnet_small GLMnet_long
GAM
GBM 2.18
GLM 2.38 0.94
GLMnet_small 2.16 1.13 1.04
GLMnet_long 2.39 0.90 0.40 0.96

Table 7.2: Mean of absolute difference in life expectancy predictions

Now that we computed residual life expediencies and have graphically shown some of
the differences in prediction of the models, we will use different metrics in order to
assess the performance of each model. Life expectancy predictions will be of use for
some (but not all) performance metrics.

7.4 Explaining life expectancy predictions with GLMs
Similarly to what we did in subsection 6.1.4 on predicted mortality rates of GLM
models, we are here going to explain life expectancy predictions of GLM models.

Linear approximation of life expectancy using Taylor-Young formula

In this section, we are going to show how to take advantage of the linear form of GLM
models in order to explain how risk factors impact on the predicted life expectancy.
More specifically, we show how to evaluate the impact of risk factors on life expectancy
and explain the deviation from the life expectancy of reference (reference means here
the life expectancy that would be predicted using only gender and mosaic cluster).
As in subsection 6.1.4 we consider the following approximation:

qxpXq “ qGAM
x,g,c eβX (7.1)

For the following computation, we will consider an annuitant of fixed gender g and
mosaic cluster c, and we will note qrefx “ qGAM

x,g,c to simplify notations.

qxpXq “ qrefx eβX

« qrefx p1 ` βXq

qxpXq ´ qrefx « qrefx βX

(7.2)

Let the residual life expectancy at 65 e65 be a function of the vector of mortality
rates Q “ pq65pXq, q66pXq, . . . , qxpXq, . . . q, we use Taylor-Young decomposition to
approximate life expectancy of an annuitant e65 with the life expectancy of reference
eref65 “ e65pQ

ref q:

e65pQq “ e65pQ
ref

q ` ∇e65pQ
ref

qpQ ´ Qref
q ` opQ2

q (7.3)

with Q the vector of mortality rates qxpXq of the annuitant and Qref the vector of
mortality rates from our life tables using only gender and mosaic of the annuitant.
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We now want to estimate the gradient ∇e65pQref q so that it can be easily computed.
We start from the expression of ey using survival function Syptq:

ey “ 0.5 `
ÿ

tě1

Syptq

with

Syptq “

t
ź

kě1

p1 ´ qy`k´1q

which leads to:

BSyptq

Bqx
“

#

´ 1
1´qx

Syptq, if y ď x ă y ` t

0, otherwise

From there, assuming x ě y, we can express the derivative of ey:

Bey
Bqx

“
ÿ

tě1

BSyptq

Bqx

“
ÿ

těx´y`1

´
1

1 ´ qx
Syptq

“ ´
1

1 ´ qx
Sypx ´ yq

ÿ

těx´y`1

Sxpt ´ px ´ yqq

“ ´
1

1 ´ qx
Sypx ´ yqpex ´ 0.5q

Coming back to equation 7.3, we can now express it by:

eypQq « eypQref
q ` ∇eypQref

qpQ ´ Qref
q “

“ erefy ´
ÿ

xěy

1

1 ´ qrefx

Sypx ´ yqperefx ´ 0.5q pqxpXq ´ qrefx q
looooooomooooooon

« qrefx βX from 7.2

“ erefy ´
ÿ

xěy

qrefx

1 ´ qrefx

Sypx ´ yqperefx ´ 0.5qpβ ¨ Xq

As β ¨ X “
ř

i βiXi, we can now express the deviation of eypQq from erefy as a sum on
each risk factor Xi:

eypQq ´ erefy « ´
ÿ

i

ÿ

xěy

βiXi

ˆ

qrefx

1 ´ qrefx

Sypx ´ yqperefx ´ 0.5q

˙

Thus, the contribution of risk factor Xi is:
ř

xěy βiXi

´

qrefx

1´qrefx
Sypx ´ yqperefx ´ 0.5q

¯

Illustrative example of life expectancy decomposition per risk factor

This approximation enables us to explain the gap of life expectancy between a specific
annuitant and the general population. To illustrate this decomposition of life expectancy
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per risk factor, we use the same annuitant A example as in section 6.1.4. As a reminder,
our annuitant is a female from group socio-economic F, having type 2 diabetes. Based
on the life table of female with socio-economic group F, the residual life expectancy at
age 65 of this population is of 19.9 years. Using the glmnet_small model that takes
into account their health status, the predicted residual life expectancy of annuitant A
is 14.7. We now want to explain why annuitant A has a lower residual life expectancy
than the one from their corresponding life table (female of socio economic group F).
Using the linear approximation of life expectancy we just presented, we decompose the
gap of life expectancy into gains and losses of life expectancy per risk factor. Here are
the results:

Figure 7.2: Gain/Loss of life expectancy per risk factor

We can then say that due to good bmi and sbp, life expectancy of annuitant A increases
by 1.8 years compared to the general population. However, diabetes status reduces their
predicted life expectancy by 2.8 years and smoker status reduces it by 4.2 years.
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Chapter 8

Assessing models performance

We are interested in metrics to help determine which one of the models is the "best".
We will present here different ways to assess the performance of our models and assess
our models using those metrics on the test set.

Our goal here is to see whether it is possible to obtain good performance with a
reduced number of explanatory variables. Indeed, the underwriting process would gain
from reducing the number of data to collect from the annuitants. We will therefore
seek whether GLMNet models are close to the GLM one.

Another goal is to check whether GLM models are outperformed by the GBM. The
Gradient Boosting Model is a powerful ML approach, that is able to automatically
capture interactions between variable along with non-linear effect. Thus, if GBM outperforms
the GLM, that could mean that we missed some effect when setting the GLM.

Assessing the performance of survival models is not always straightforward. In this
section, we follow the methodology explained and applied in Review of Statistical
Methods for Evaluating the Performance of Survival or Other Time-to-Event Prediction
Models (from Conventional to Deep Learning Approaches) written by Park S & al
[25].

The methodology consists in assessing survival models through different types of metrics:
overall metrics, calibration metrics and discrimination metrics. In this section we focus
on each type of these categories, present some metrics and apply them on our test
set.

8.1 Calibration performance metric
In this section, we present calibration metrics. Calibration evaluates whether the predicted
probabilities fit with the observed outcome on average [25] [30].

Because we cannot observe the actual probabilities of each individual (we can only
observe the outcome of survival or death), we group the pseudo observations and then
assess how the average predicted probability compares with the observed probabilities
in each group. The groups should be formed to gather pseudo observations with
homogeneous death probabilities. Calibration metrics are statistics that partition a
data set into groups and assess how the average predicted probability compares with
the outcome in each group.
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Because calibration metrics focus on the accuracy of a probability measure, we will
estimate it on our pseudo-observation test set. Each line of our dataset will therefore
provide us with a predicted mortality rate (one for each model), exposure, and an
outcome death status.

8.1.1 Calibration plot

Calibration plot is a primary graphical method for evaluating calibration performance.
It consists of creating groups by homogeneous mortality rates. Because it involves
mortality rates, this metric will be assessed using our test database at pseudo-observation
level.

Therefore, for each model, we will divide our pseudo observations by quantiles of the
predicted probabilities. Because age has such a big impact on mortality rates, and we
do not want to create bins that will end up regrouping pseudo observation of the same
age, we divide our pseudo observations by quantiles of the predicted probabilities per
age. This will enable to create bins having the same distribution of age.

As we have a large amount of data at our disposal, we can afford to create our bins
using percentiles. We therefore divide our test pseudo observation database into 100
groups.

In Figure 8.1, we provide a scatter plot chart for each model. A point corresponds to
one of the 100 bins created. We plot the observed empirical mortality rate inside the
bin (y axis) versus the mean predicted mortality rate (x axis).

A model that performs well, will have predictions close to observation. Thus, the closer
the curve to the y=x axis, the better model calibration. If the bins are on the left side
of the y=x axis, then the model has underestimated the empirical mortality rate of the
bin. If the bins are on the right side of the y=x axis, it overestimated it.

As we are dealing with longevity risk, we want to avoid overestimating mortality
rates. Indeed, overestimating mortality rate will result in predicting underestimate life
expectancy. In the case of life annuity products, this would lead to an unanticipated
and underestimated amount of annuity cash flows.
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Figure 8.1: Calibration plot per model with 100 bins

The calibration plot confirms some remarks we made while analysing life expectancy
predictions. Namely, models GLM and GLMnet_long seem to have similar behaviour
and we notice once again the smaller discrimination power of the GLMnet_small model.
Indeed, the last percentile, and therefore the pseudo observations considered as being
the most at risk, has a mean mortality rate smaller than the 3 other models, meaning
there is more mutualization of the risk or in equivalently less segmentation.

Apart from those confirmations, we can say that models seem to be rather well calibrated.
However, we can see that all the models seem to underestimate the mortality risk in the
last percentile bin (the riskier pseudo observations), apart from the GBM model.

8.1.2 A/E per risk factor

Another way to assess calibration is to group pseudo-observation per risk factors
(instead of quantiles, or percentiles as done previously). This enables to verify whether
models are well calibrated with respect to one or several risk factors.

A/E is a ratio of actual deaths in a specific population to those predicted by a life table
or model. The closest it is to 1, the best calibrated is the model. In the case of an A/E
exceeding to 1, the model is overestimating the mortality. A/E is a metric similar to
SMR that does not necessarily focus on age groups.

It enables to measure whether the model was able to capture the mortality specificities
with respect to one or several characteristics (for example age, gender, diabetes status,
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etc...).

We compute total number of deaths observed in a group G, it is called the Actual. The
Expected corresponds to the expected number of deaths, it is obtained by summing the
predicted mortality rates of pseudo observation i times their exposure:

AG

EG
“

ř

iPGDi
ř

iPG q̂i ˚ Ei

with i all pseudo observations within group G.

To assess if A/E’s gap from 1 is due to volatility or model misestimation, we provide
also the confidence intervals at 95% level.

We compute it using the assumption that deaths follows a binomial distribution with
mean the predicted mortality rate of group G and size the total exposure of the group.
Under this null hypothesis, we get that

AG
„ Bp

ÿ

iPG

Ei,

ř

iPG q̂i ˚ Ei
ř

iPG Ei

q

Lower and upper bounds of SMRs are computed as quantiles 2.5% and 97.5% of this
binomial distribution, divides by expected number of deaths EG. If 1 is not part of the
confidence interval of the SMR of the model for group G, we reject the null hypothesis.
This would mean that the actual number of deaths does not follow such a distribution
and therefore the model is not well calibrated on the group G.

We decided to plot the Actual over Expected metric for the GAM life tables (using age,
gender and mosaic clusters) as well. As the GAM model does not take into account any
health related variable, it will mainly reflect the increase (or decrease) in mortality of
the risk factors studied. One can see the A/Es obtained with the GAM model as the
average impact of a risk factor on mortality.

Body Mass Index

Obtained A/E per BMI group
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As mentioned previously, A/E of our GAM life tables show the increase of risk. As we
could expect, we see that having a BMI too low or too high results in an increased
mortality risk.
The first two BMI group corresponds to a BMI below 18.5, that is person who are
greatly underweighted. This can be caused by anorexia or due to another pathology.
This group exhibits mortality 50% higher than average.
At the other extreme, the last two groups correspond to morbid obesity. This group
exhibits even a higher extra mortality, between 50% to 100% higher than average.

Regarding the models trained on comorbidity variables, we can say that they seem to
capture well the impact of BMI on mortality. It appears that they are well calibrated
with respect to BMI risk factor, except for the GLMnet_small model that seems to be
less accurately calibrated at low and high BMI values.

Smoker intensity

Obtained A/E per smoking intensity

As one could expect, the GAM A/Es shows that smoking intensity habits increases the
mortality risk.
Intensity 0 is composed of non-smokers, while intensity 8 is composed of the heaviest
smokers. Non-smokers have a mortality around 20% lower than average, while heavy
smokers (intensities 4 and higher) have a mortality 20% higher.

We reach the same conclusion as for the BMI risk factor. The models are rather well
calibrated with respect to smoking intensity risk factor, except for the GLMnet_small
model that shows a slightly less accurate calibration.
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Other risk factors

In Appendix 8.15, we provide other A/E plots, with respect to comorbidity variables
diabetes, asthma, COPD and stroke. We also provide a plot showing combining effect
of systolic blood pressure depending on and diabetes status.

Once again, we can conclude that the GLM, GLM_long and GBM are better calibrated
that the other two.

8.2 Discrimination performance metric
In previous section we assessed whether the models have an accurate average prediction.
In other words, we checked if models are subject to bias on some specific group.
In this section, we are interested in the ability of the models to discriminate the
individuals accurately.

In survival models, discrimination performance refers to the ability of a model to predict
whether an annuitant will live longer than another one. This ability to discriminate is
important for us, as the goal of enhanced life annuities is to offer more advantageous
annuities to people that have a life expectancy shorter than others. It is therefore
necessary to construct a model that discriminates annuitants accurately.

We note that calibration metrics and discrimination metrics are complementary analysis,
one does not insure the other and both metrics should be evaluated.

In the previous chapter, we saw that some of our fitted models segmented more than
others. Indeed, the Gradient Boosting Model seems to be the more discriminating
models, whereas the GLMnet_small model segments less the patients. We will therefore
want to assess which segmentation is the most accurate.

8.2.1 C-index

The most common metric to assess discrimination performance is the Concordance-
Index (or C-Index) [25]. C-Index is a metric that has been introduced by Harrell and
al. [17] and was first used for biomarker performance analysis in the medical field.

C-Index is the estimate of a probability of concordance. It is a conditional probability
that compares whether the model life expectancy predictions (Êi, Êj) of two individuals
i and j are ordered in the same way as their observed survival time (Oi, Oj).

C-Index “ P prÊi ă Êj|Oi ă Ojsq

Because the C-Index is a probability, it ranges from 0 to 1. If all pairs of individuals
are rightly order, then we would have a C-Index equal to 1. Random guess would have
a C-Index of 0.5. In the case of a model that orders wrongly all pairs of individuals,
then we would have a C-Index equal to 0.

This probability is estimated by considering all patients in our test set and ordering
them by their predicted residual life expectancy at age 65. We then calculate the C-
Index as the proportion of concordant pairs divided by the total number of possible
evaluation pairs [8].

Because we are in the case of censorship, we cannot compare all patients of our test
data set. Indeed, we do not observe the age of death of everyone and therefore cannot
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conclude on the survival prediction order accuracy in all cases. We present here the
different cases that can arise when comparing two patients i and j and comment on
the possibility or impossibility of comparison.

• The easier case occurs when both patients i and j have an observed age at
death. In that case, patients i and j are considered as being a "comparable
pair" because we can compare the predicted life expediencies and conclude of the
ranking accuracy. If the ranking is accurate, the pair is said to be "concordant".
If not, the pair is "discordant".

• When both patients have no known age at death, then comparison is not possible
and we consider i and j as being an "incomparable pair". Nothing can be done
to conclude on the ranking accuracy of the model and we will not be able to use
this pair of patients to estimate the C-Index.

• The final case arises when death of one of the patients is observed (say patient
i) but not the one of the other patient (patient j). Assessment of discrimination
accuracy then depends on the predicted ranking of the assessed model:

– if patient i was predicted as having a longer life expectancy than patient j,
and

∗ if patient j is older than the age at death of patient i, then this pair is
comparable and we can conclude that the pair is discordant.

∗ if patient j is not known to be older than the age at death of patient i,
then we cannot conclude on the ranking accuracy of the model. These
pair is incomparable because of censoring.

– if patient i was predicted as having a shorter life expectancy than patient
j, and

∗ if patient j is older than the age at death of patient i, then this pair is
comparable and we can conclude that the pair is concordant.

∗ if patient j is not known to be older than the age at death of patient i,
then this pair is incomparable.

8.2.2 Computation difficulties

Because the C-Index is estimated on the life expectancy prediction, we will assess it
using our test data set at patient level. This data set is composed of 350,231 patients.
Therefore, testing all the combinations of pairs of patients is not feasible.

We could simply assess the C-Index on a subset of our test database, however we chose
to evaluate the C-Index in a more reliable way which had the benefit to reduce the
numbers of pairs to evaluate.

The idea is the following. Due to the survival data structure available, it appears to us
that it is more relevant to work by cohorts.
Because we are predicting period life expectancy, comparing patients of different cohorts
would not make sense. Indeed, individuals of different cohorts have different Mortality
Improvement (MI) rates that would have to be applied. Therefore, resulting period life
expectancy cannot be compared. In order to bypass this problem, we compared pairs
of patients of same cohort.
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As the data is composed of an aggregation of several cohorts, most of the observation
couples considered in the C-index calculation would be individual with different age.
Considering cohorts, allows us to compute the C-index on couples of individual with
the same age. Thus, the C-index will measure the model ability to predict differences
in mortalities that are not due to age.

For each cohort h, we computed the number Ph of comparable pairs as well as the
number Vh of valid / concordant pairs. We can therefore compute the C-Index as:

C-Index “

ř

h Vh
ř

h Ph

Comparing patients within cohorts reduced the number of pairs to assess enough to be
able to evaluate the C-Index in a reasonable time (a few hours).

8.2.3 Discrimination metric results

As well as for previous metrics results, we provide the GAM as a reference model. We
show on the following table the results per model:

Model Concordant pairs Comparable pairs C-Index
GAM 201,566,041 345,304,591 58.37%
GBM 248,876,977 374,979,194 66.37%
GLM 248,227,125 374,951,574 66.20%

GLMnet_small 245,178,677 374,895,628 65.40%
GLMnet_long 247,095,796 374,825,903 65.92%

C-Index discrimination metric of each model

As it should, we see that taking into account health status increases significantly the
discrimination performance of our models. Once again, the GBM model has the best C-
Index score, follow by the GLM, the GLMnet_long and then the GLMnet_small.

We conclude that our GLM models are not too far off the discrimination power of the
Machine Learning one.

8.3 Overall performance metrics
On top of calibration and discrimination metrics, we can assess metrics of overall
goodness of fit.

8.3.1 McFadden’s Pseudo-R2

We start by introducing the McFadden (1973) pseudo-R2 metric [9]. McFadden pseudo-
R2 assesses the improvement from a null model to our fitted model:

pseudo-R2
“ 1 ´

logpLMmodelq

logpLMinterceptq

with LM the likelihood of model M , Mmodel our fitted model and Mintercept the model
with only intercept as predictor.

71



The higher the pseudo-R2 is, the better the decrease of deviance. Pseudo-R2 are usually
considered as the equivalent of the traditional R2 in ordinary least square regression.
However, we note that we should not expect similar ranges of values as the R2 usually
takes in the presence of good predictive models.

Indeed, as stated by McFadden himself in a footnote of his paper Quantitative Methods
for Analyzing Travel Behaviour of Individuals: Some Recent Developments (pages 34-
35) [9]: "Those unfamiliar with the [pseudo-R2] index should be forewarned that its
values tend to be considerably lower than those of the R2 index and should not be
judged by the standards for a "good fit" in ordinary regression analysis. For example,
values of .2 to .4 for [pseudo-R2] represent an excellent fit."

8.3.2 Brier score

The Brier score is a metric equivalent to the Mean Square Error (MSE) adapted for
models with binary outcomes. It computes the mean squared difference between the
predicted death probability and the outcome status across all the pseudo observations
[25].

Brier score “
1

n

n
ÿ

i

pq̂i ´ 1Di“1q
2

with Di equal to 1 in case of death and 0 in case of survival. A score closer to 0 indicates
a better predictive performance

Because we are in the case of censorship and truncation, we must adapt this measure to
include this specificity. Therefore, we add exposure as weight and compute a weighted
mean.

Weighted Brier score “
1

ř

iEi

n
ÿ

i

Eipq̂i ˚ Ei ´ 1Di“1q
2

Note that Brier scores are not informative by themselves but should be used to compare
and rank the performance of different models.

8.3.3 A/E

We can also rely on the A/E measure, but this time computed on the whole test set.
We restate that the Actual over Expected ratio is a ratio assessing whether the model
tends to over or under-estimate the predicted outcome, in our case mortality.

A

E
“

ř

i Di
ř

i q̂i ˚ Ei

˚ 100

A model predicting accurately will have a A
E

score close to 100%. A score inferior to
100% will result in overestimating mortality, and a score bigger than 100% will result
in underestimating mortality.

8.3.4 Application of overall metrics

Now that we have presented some overall goodness of fit metrics, we assess them
on our test dataset at pseudo-observation level and show the results in the following
table:
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Model pseudo-R2 A/E Brier score
GAM 0.156 99.36% 0.030867
GBM 0.180 99.44% 0.030597
GLM 0.177 99.78% 0.030635

GLMnet_small 0.170 100.23% 0.030756
GLMnet_long 0.176 99.73% 0.030697

Overall performance metrics

First, McFadden pseudo-R2 values are indeed, as explained earlier, considerably lower
than values that we could have expected from a traditional OLS R2. Even though
interpretation of the McFadden pseudo-R2 is not as straightforward as a R2, we can use
this metric to compare goodness of fit between our models. With respect to McFadden
pseudo-R2, the GBM appears to be the model that fits best.

Second, the A/E metric informs us that all models overestimate slightly mortality rates
which is a risk when dealing with longevity risk, except for the GLMnet_small model
that tend to overestimate slightly mortality rates.

Finally, Brier score shows scores that seem to not be different enough from one model
to another to draw any conclusions.

8.4 Conclusion on metrics analysis
Based on the different calibration, discrimination and overall metrics, we can conclude
that the Gradient Boosting Model is the best predictive model. However, the General
Linear Model performance are very close. This means that all the main explanatory
variable impacts have been taken in account in the GLM model. Thanks to the data
preparation and the insights on the underlying risk behaviour, we manage to reach the
prediction power of a machine learning model.

We can also conclude that it would be reasonable to use one of the two GLMnet models.
We could recommend the use of the GLMnet_long as it allows to reduces the number
of fitted terms with almost no loss in performances.
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Conclusion

The aim of this master thesis was to construct mortality level rates, first for standard
life annuities products and then for underwritten life annuities products.

For a standard life annuities basis construction, and to respect business operational
constraints, we developed and applied a custom ascendant hierarchical clustering method.
It allowed us to perform an aggregation of socio-economic classes on a relevant way from
mortality risk perspective. We managed to provide smoothed life tables with limited
dimensions that captures well the age, gender and socio-economic impact on annuitant
mortalities.

For underwritten annuities, we had to use more complex models to estimate mortality
risk based on their health status. However, interpretability of models is an important
topic as we must be able to explain the differences in the proposed premiums. This is
why GLM models were chosen to estimate level mortality risk.
Because of the unknown relationship form existing between the predictors and the
target variable, a complex model based on medical expertise and statistical analysis
was constructed, featuring a lot of non-linear transformations and interaction terms
enabling to encompass a majority of possible effects. In order to retain only relevant
features, two additional GLM using LASSO penalization were fitted to reduce the
complexity of the model and the number of variables used.

At a time when Machine Learning models are shown to often outperform traditional
models, we drew an interest in verifying that our GLM prediction performance was not
out-powered by a Machine Learning model. Indeed, the fear for an insurance company
to be anti-selected is more than ever present, and it felt necessary to check that our
fitted GLM model could segment well enough the annuitants. After considering several
Machine Learning models and their compatibility with truncated and censored data,
we settle on constructing a Gradient Boosting Model.

Sensitivity analysis was performed on the GBM model in the attempt to unravel
potential unconsidered patterns in the data that might not have been considered by
the GLM features. Partial dependence plots confirmed non-linear relationship of some
variables. Also, Sobol indices estimation was performed on the GBM model in the desire
to assess if we had taken into account the main explanatory variables interactions during
the GLM feature engineering process. Unfortunately, estimation was computationally
intensive, and our results were inconclusive and unstable.

Using several metrics adapted for survival analysis studies allowed us to conclude that
the GLM had a predictive performance very close to the GBM model. We also concluded
that it felt reasonable to reduce the number of terms in the GLM with a limited loss
of performance.
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Dictionary

A/E Actual versus Expected.

ADL Activities of Daily Living.

AIC Akaike Information Criterion.

BMI Body Mass Index.

C-Index Concordance-Index.

COPD Chronic Obstructive Pulmonary Disease.

GAM Generalized Additive Model.

GBM Gradient Boosting Machine.

GLM Generalized Linear Model.

GP General Practitioners.

HMD Human Mortality Database.

IMRD IQVIA Medical Research Database.

MI Mortality Improvement.

ML Machine Learning.

MSE Mean Square Error.

OLS Ordinary Least Square.

SBP Systolic Blood Pressure.

SMR Standardized Mortality Ratio.

THIN The Health Improvement Network.

UK United Kingdom.
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Appendix

Appendix A : Descriptive statistics
Alcohol consumption intensity

Figure 8.2: Alcohol consumption distribution (number of drinks per day)

78



Systolic blood pressure

Figure 8.3: SBP modality frequency
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Appendix B : GAM using B-splines
B-Splines

The term ‘spline’ refers to a craftsman’s tool, a flexible thin strip of wood or metal,
used to draft smooth curves. Several weights would be applied on various positions so
the strip would bend according to their number and position. Spline functions uses the
same concept for fitting the impact of an explanatory variable.

Splines are piece-wise polynomial functions. First, we divide our x-axis into uniform
intervals using m knots. Those knots will define the intervals the polynomial functions
will be fitted on. We will use cubic splines, which are splines with third degree polynomial
functions.

Figure 8.4: A cubic spline fitted on 5 knots

Construction of one B-spline

Each spline is fitted on n consecutive knots rxj, xj`ns on which we interpolate cubic
polynomials:

• Successive polynomials go through the junction points: Pipxiq “ yi “ Pi´1pxiq, i “

j, . . . , j ` n ´ 1,

• Successive polynomials have first derivatives (i.e. slopes) equal to the junction
points: P 1

i pxiq “ P 1
i´1pxiq, i “ j, . . . , j ` n ´ 1,

• The successive polynomials also have second derivatives (curvatures) equal to the
junction points: P 2

i pxiq “ P 2
i´1pxiq, i “ j, . . . , j ` n ´ 1,

• Two more constraints are added on the second derivatives of the extreme points:
P 2
j pxjq “ P 2

j`n´1pxj`nq “ 0.

To get the spline represented in figure 8.4, we fix n=5 which leads to fit 4 polynomials.
The spline is the sum of those cubic functions:

Bjpxq “ P1,jpxq ` P2,jpxq ` P3,jpxq ` P4,jpxq

There are 16 degrees of freedom (4 polynomials of degree 3) and 15 constraints (5
nodes with 3 constraints), so there is only one degree of freedom left. This last degree
of freedom will be used to set the "high" of the spline to 1.

80



Field of B-splines

We create splines for each j P r0,m ´ ns, which leads to a field of splines:

Field of cubic splines

Those splines will then be used as regressors on which we will fit the model

Fitting of the model

We define the following function:

gpxq “

m´n
ÿ

j“0

αjBjpxq

We then search the parameters αj that minimise the objective function:
ÿ

x

pqx ´ gpxqq

So this leads to perform a classical linear regression where:

• the explanatory variables are the B-splines

• the explained variable is the death rate qx

Using vector notations, the optimisation problem gives the solution:

α “ pGtGq
´1Gtq
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Appendix C : Analyses of the fitted splines
Now that the splines are fitted, we analyse the difference between the two splines (not
including intercepts, nor the logit link function). We plot the two splines. In the second
graph we show the difference between the male spline and the female spline:

Figure 8.5: Fitted splines Figure 8.6: Splines difference between
men and women

We can see that the impact of getting older is significantly different at some ages
between men and women. This justifies the need to fit different splines for each gender
as we did.
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Appendix D : Mosaic codes

Figure 8.7: Description of mosaic classes
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Appendix E : Socio-economic clusters of Mosaics

Figure 8.8: Cluster description of mosaics
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Appendix F : GLM models

Switching from binomial to Poisson modelling

Due to truncation and in cases when there are too many variables to group the pseudo-
observations, some additional difficulties arise when fitting a binomial model.
Indeed, working at the pseudo-observation level and with cases of exposure inferior
to 1 for pseudo observation with death D “ 1 (pseudo observation that could not
be observed during their whole age year due to start and end dates of the pseudo
observation), it is not feasible to fit a binomial model using traditional implemented
packages.
The problem is to be able to take into account correctly those rows having an exposure
E ă 1 and a death status D “ 1.

As explain in Chapter 5, to fit binomial models for mortality rate estimation, we
consider as target variable Yi “

Di

Ei
and as weight wi “ Ei. However, in our dataset,

we have a significant number of truncated pseudo-observations due to our data format,
resulting from deaths that occurred during the first half year and last half year of the
study period. Those pseudo-observations would then have a target variable Y ą 1,
which blocks us when fitting the model.

A solution could be to limit the study period by putting aside the first half year and
last half year. This would enable to limit the problem, as a very large part of pseudo-
observation where a death occurs (D “ 1) with exposure lower than 1 (E ă 1) are
coming from two half years. For the remaining few cases, one could force the exposure
to 1 when death occurs.
However, this solution would imply to put aside a significant amount of data. We
estimated that with this approach we would have to put aside around 42% of pseudo-
observations, corresponding to 29% of total exposure.

Therefore, in order to bypass this technical difficulty, we decided to use Poisson model
as approximation of Binomial model.

An analysis of the impact of this approximation has been done to measure its validity.
To assess the impact, we compared predictions of a Binomial model and a Poisson model
fitted on the same pseudo-observation dataset obtained by leaving the first and the last
half years out of the study period. To insures that we can fit the Binomial model, we
forced to 1 the exposures all the remaining problematic pseudo-observations.
Results indicate that the mean of absolute difference in mortality rate predictions of
the Binomial qBx and Poisson qPx on the trained data set is of 0.0008, meaning that on
average we have qPx “ qBx ˘0.0008. This result makes us conclude that the approximation
has very limited impact on the prediction.
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Analysis of form of impact of some numerical variables on mortality
risk

Figure 8.9: Raw death rates and initial exposure by alcohol consumption
intensity

Figure 8.10: Raw death rates and initial exposure for ex-smokers by duration
since quitting smoking
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GLM variables used

Information GLM GLMnet_long GLMnet_small
age X X X
gender X X X
cluster X X X
smoker_status X X X
smoke_intensity X X X
quit_duration X X X
sbp X X X
bmi X X X
alcohol_status X X X
alcohol_intensity X X X
fev1fvc X X
hba1c X X
diabetes X X X
diabetes_type X X X
duration_diabetes X X X
insulin X X X
hypertension X X X
copd X X X
duration_copd X X
pneumoconiosis X
bronchiectasis X
stroke X X X
stroke group X X
mi X X X
mi_status X X
duration_mi X X
tia X
retinopathy X X
neuropathy X X
amputation X
af X X
heartvalve X X
hf X X
cardiomyo X X
othercv X X
pvd X X
aortic X
angina X X

Table 8.1: List of used information for each GLM model
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GLM fitted coefficients

For confidentiality purpose, we only show part of the results.

Output tables were produced using stargazer library [22].

Table 8.2: Results

Dependent variable:

mortality_status

GLM GLMnet_long GLMnet_small

smokerEX 0.500˚˚˚ 0.577˚˚˚ 0.201˚˚˚

smokerSM 0.824˚˚˚ 0.906˚˚˚ 0.652˚˚˚

I(sbp 2̂) 0.005˚˚˚

I(sbp 3̂) ´0.0002 0.0003˚˚˚

I(bmî 2) 0.025˚˚˚ 0.024˚˚˚

bmi ´0.229˚˚˚ ´0.206˚˚˚ ´0.047˚˚˚

pneumoconiosis 0.233˚˚

bronchiectasis 0.406˚˚˚

copd 1.080˚˚˚ 0.816˚˚˚

diabetes 0.582˚˚˚ 0.476˚˚˚ 0.548˚˚˚

hypertension 0.476˚˚˚ 0.561˚˚˚ 0.908˚˚˚

smokerEX:I(agê 2) 0.002 ´0.031˚˚˚

smokerSM:I(agê 2) ´0.070˚˚˚

smokerEX:sbp ´0.007 ´0.010˚˚

smokerSM:sbp 0.002 ´0.007
age:sbp ´0.002 ´0.003 0.005˚˚˚

sbp:male ´0.014˚˚

I(agê 2):I(bmî 2) ´0.001˚˚˚ ´0.001˚˚˚ 0.001˚˚˚

XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX

bmi:alcoholDR -0.028˚˚˚ -0.025˚˚˚ -0.049˚˚˚

smokerEX:I(quitdur̂ 2) -0.035˚˚˚ -0.009˚˚˚ -0.010˚˚˚

alcoholDR:alc_int 0.035˚˚˚ 0.055˚˚˚ 0.060˚˚˚

age:pneumoconiosis -0.045˚˚˚

age:bronchiectasis -0.015˚

bronchiectasis:copd -0.241˚

copd:dur_copd 0.005˚ 0.004
stroke:diabetes 0.068 0.179˚˚˚ 0.209˚˚˚

XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX

cluster_B:diabetes 0.059 0.055 0.043
cluster_C:diabetes ´0.169˚˚˚ ´0.138˚˚˚ ´0.131˚˚

cluster_D:diabetes ´0.340˚˚˚ ´0.288˚˚˚ ´0.317˚˚˚
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cluster_E:diabetes 0.018 0.024 0.027
cluster_F:diabetes ´0.183˚˚˚ ´0.148˚˚˚ ´0.134˚˚˚

cluster_G:diabetes ´0.581˚˚˚ ´0.560˚˚˚ ´0.574˚˚˚

diabetes:amputation 0.552˚˚˚

age:hf 0.008˚˚˚ 0.009˚˚˚ 0.010˚˚˚

hf:heartvalve 0.264˚˚

hf:cardiomyo 0.151
sbp:hf 0.004 -0.035˚

I(bmî 2):mi 0.003
age:angina 0.002
smokerEX:angina -0.014
smokerSM:angina 0.013
af:angina 0.268˚˚

pvd:angina 0.322˚˚ 0.372˚˚˚

I(sbp 2̂):angina 0.0004
age:af 0.006˚˚˚ 0.005˚˚˚

smokerEX:male:quitdur 0.005
smokerEX:age:quitdur -0.001˚˚˚

smokerEX:age:I(quitdur̂ 2) 0.0005˚˚˚

XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX

smokerEX:male:alcoholDR -0.087˚˚˚

smokerSM:male:alcoholDR -0.131˚˚˚

male:alcoholDR:alc_int 0.020˚˚

age:male:copd -0.006 -0.004˚˚˚

I(agê 2):male:copd 0.00004 0.0001˚˚˚

smokerEX:copd:fev1fcv -0.013 0.018˚˚

smokerSM:copd:fev1fcv -0.093
age:copd:fev1fcv ´0.031˚˚˚ ´0.035˚˚˚

I(agê 2):copd:fev1fcv 0.002
smokerEX:copd:I(fev1fcv̂ 2) 0.002
smokerSM:copd:I(fev1fcv̂ 2) 0.009
I(agê 2):copd:I(fev1fcv̂ 2) ´0.001
age:copd:diabetes -0.003˚˚˚ -0.003˚˚˚ 0.002˚˚˚

diabetes:diabType2:dur_diab 0.066˚˚˚ 0.009˚˚˚

male:diabetes:diabType2 -0.139

XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXX

I(agê 2):male:diabetes ´0.019 ´0.102˚˚˚

age:male:diabetes ´0.016 ´0.051˚

diabType2:dur_diab:insulin 0.017˚˚˚ 0.020˚˚˚ 0.028˚˚˚

age:diabType2:dur_diab -0.001˚˚˚ 0.0001˚˚

smokerEX:male:alcoholDR:alc_int -0.006 -0.015˚˚˚
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smokerSM:male:alcoholDR:alc_int 0.012 0.006
smokerEX:age:diabetes:diabType2 -0.001˚˚˚ -0.001 -0.0004
smokerSM:age:diabetes:diabType2 -0.003˚˚˚

diabetes:insulin:retino:neuro 0.426˚˚˚ 0.484˚˚˚

Observations 1,979,753 1,979,753 1,979,753
Log Likelihood -229,838.200 -230,296.100 -231,539.400
Akaike Inf. Crit. 459,962.500 460,744.300 463,160.800

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Partial dependence plots

Figure 8.11: Alcohol intensity
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Figure 8.12: Smoking intensity
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Appendix G : Sobol indices estimation
We show here two trials of Sobol indices estimation of interaction of 2 variables. Only
indices which were statistically significant are shown :

Figure 8.13: Residual Life expectancy at age 65 predictions per model

As we can see, the two trials gave very different outputs. Moreover, some interactions of
variables shown as relevant by the estimated Sobol indices were sometimes doubtful.

Numerous attempts were run in order to stabilize results. However we concluded that
due to lack of computational power, results were not conclusive.
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Appendix H : Life expectancy prediction example
We provide examples of life expectancy predictions for a reference population when
tuning some parameters such as smoking status, alcohol status, BMI, SBP, diabetes
and COPD:

Figure 8.14: Residual Life expectancy at age 65 predictions per model
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Appendix I : A/E of several comorbidities

Figure 8.15: A/E of four comorbidities
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Figure 8.16: A/E of alcohol intensity per group
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Figure 8.17: A/E of Systolic blood pressure depending on diabetes status
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