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Abstract

La directive Solvabilité IT impose de quantifier les marges de solvabilité par
Iintégration de la notion de risque dans les calculs. Notamment, le Solvency
Capital Requirement (SCR) requiert d’évaluer la distribution des risques auxquels
est soumis un assureur, et de mesurer les queues de ces distributions. En par-
ticulier, le risque de prime concerne la mesure du risque que le coiit des sinistres
futurs d’un portefeuille soit supérieur aux primes percues sur ce portefeuille. Ce
mémoire propose une extension du modéle de Jean-Philippe Boucher et Guil-
laume Couture-Piché [BCP16] afin de mesurer la déviation de la prime encaissée
sur un portefeuille donné. L’objectif est centré sur le modeéle en lui-méme. Des
exemples d’applications sont recensés, a la fois dans le contexte du risque de
prime, mais également dans un champ actuariel plus large.

The Solvency II directive requires to compute solvency margins by integ-
rating the notion of risk in their computations. More especially, the Solvency
Capital Requirement (SCR) requires to determine the distribution of all the risks
undertaken by an insurer, and to measure the tails of those distributions. In
particular, the premium risk deals with the measure of the risk that the cost of
future claims for a given portfolio will exceed the premium charged on this port-
folio. This thesis extends the model of Jean-Philippe Boucher and Guillaume
Couture-Piché [BCP16] in order to measure the deviation of the premium col-
lected on a given portfolio. Focus is made on the model itself. Application
examples are provided in a Solvency II context, but also in a wider actuarial
context.

Mots clés— Risque de prime, processus de Poisson homogéne, processus
de Poisson inhomogéne, processus de Cox, modeéle collectif, files d’attente

Keywords— Premium risk, homogeneous Poisson process, inhomogeneous
Poisson process, Cox process, collective model, queuing theory
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Introduction

This master thesis originates from my time at AXA France, where I was work-
ing as an internal model and reinsurance actuary. I worked specifically on the
premium risk, both on the claim side and on the premium side. I wanted to
improve the results of the model in place on the premium side, and decided to
work on it on my own. I initiated this work way before I started my studies
at ISFA. Working on this side project was a way for me to pursue my work
on actuarial research and development initiated when I was working at Mazars
with Antoine Chopineau.

At that time, I was working on an individual claim reserving model adapted
from Alexandre Boumezoued [BD17|. This work showed me the potential of
individual data to better capture and measure risk. My idea was then to pursue
with this individual approach for developing the model on the premium risk.
During the bibliography review, I found the article written by Jean-Philippe
Boucher and Guillaume Couture-Piché [BCP16], whose modeling of the number
of contracts was conducted in a very elegant and natural way. I decided to work
on it to initiate my model.

As this work was initiated before I started my studies at ISFA, the premises
of the model were written in English. After starting my studies at ISFA, I
thought that this would be an interesting master thesis subject, and I pursued
my work more in details on it, and kept English as a working language.

Going back to the thesis itself, its original purpose was to propose an al-
ternative to premium risk modeling, but ended in discovering that it could be
applied in many other fields than solvency margins measurements. It also differs
from its individual data approach, that enables a much better fit and requires
lower historical records than standard aggregate data which are current practice
in the market. Thus, this thesis doesn’t focus on the application of the proposed
model to Solvency II, but rather introduces a technical framework, that can be
used either in internal modeling, pricing, customer lifetime value, etc.

It relies strongly on the results introduced in [BCP16], for which I have bor-
rowed the queuing theory and the service time framework. However, this thesis
extends the model by working on some more general arrival processes for the



queuing part, and by proposing a semi-parametric approach for the service time,
that can also be extrapolated. An innovative algorithm is proposed to simulate
the service time.

The idea of the model is to distinguish the number of contracts and the indi-
vidual premium in the portfolio. The number of contracts modeling is the major
part of this thesis, as this is where the main improvements are proposed. The
individual premium will be modeled in a straight-forward way. The thesis is con-
structed in the following way. Homogeneous Poisson, inhomogeneous Poisson
and Cox processes are introduced as they are the basis of the number of con-
tracts modeling. Classic results of the queuing framework are also introduced.
Then, parameters estimation methods are introduced. Those estimations will
be performed, and simulation algorithms will be described and applied. Finally,
we will fit the premium straightforwardly, and model the overall portfolio using
a collective risk approach. The performance of the different approaches will be
compared and discussed.
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Chapter 1

Modeling the number of
contracts

1.1 Reminders on Poisson processes

As exposed in the introduction, Poisson processes will be at the heart of the
number of contracts model. This section depicts basic results on Poisson pro-
cesses. First, homogeneous Poisson processes will be introduced, as they con-
stitute the most simple way to build a queuing system framework. Then, we
will enlarge the framework to non-homogeneous (or inhomogeneous) Poisson
processes. Such processes enable to add more flexibility, on the constructed
queuing system, which will be discussed later. Finally, doubly-stochastic Pois-
son processes, often named Cox processes, will be depicted to benefit from a
maximum flexibility in the model, but leading to a loss of generality in the
queuing system framework, as closed formula won’t be available anymore.

Most of this section is comprised of definitions and theoretical results, and
the associated proofs. The reader will be guided through these results with
illustrating examples in order to see how those results interact with each other.

1.1.1 Basic results on the homogeneous Poisson process

The underlying probability distribution driving Poisson processes is the expo-
nential distribution. Its memoryless property is key in this model. Gamma and
Poisson distributions definitions are recalled, as the former will be used as an
intermediate result.

Definition 1.1.1 (Exponential distribution). A random variable S is said to
follow an exponential distribution with parameter X > 0 if S is positive and its
distribution function fs satisfies

fs(x) = Xexp (—Ax)



Proposition 1.1.1 (Memoryless property of exponential distribution). Lett >
0, s > 0. A random variable S exponentially distributed satisfies the memoryless
property, that is:

PS>x+t]|S>x)=PS >t

Proof. Let S be a random variable exponentially distributed.

PS>z+tNS>ux)
P(S > x)

P(S>x+t)

P(S > z)

_exp (=Mx +1))
exp (—Az)

= exp (—\¥)

=P(S >t)

PS>xz+t|S>x)=

O

Let’s assume you have been waiting for an event for s units of time. The
memoryless property says that the distribution of the remaining waiting time
until the event is unchanged by the s units of time you have been already waiting
for. This desirable property is shared by a very few classical distributions. The
survival curve that will be introduced in section 3.1.3 doesn’t share this property,
and will make simulations much more difficult.

Definition 1.1.2 (Poisson distribution). A random variable N is said to be
Poisson-distributed with parameter X > 0 if N takes its value in N and its
distribution function fyx satisfies

M exp (=)

Iy (k)= il

Definition 1.1.3 (Gamma distribution). A random variable G is said to be
Gamma-distributed with parameters n € N* and A > 0 if G is positive and its
distribution function fg satisfies

(Az)F 1 Xexp (—Ax)

Consider a system where individuals enter at time 0 < t] < to < -+ < t, <
--+. Assume that the increments s; = ¢; — t;_1, (s1 = t1) are independent ran-
dom variables and exponentially distributed with parameter A. For any n € N,
denote S, = Y7 ;.

This system can be referred as an insurance portfolio, where insured un-
derwrite their contracts at time (¢;);;.,,- The increments (s;);.,,, represent
in this case the time difference between two underwritings. Such increments
require the need for continuous data, that is, individual data for each insured.



Proposition 1.1.2. S, is Gamma-distributed with parameters n and X

Proof. We prove this result by induction. For n = 1, S; = s; is exponentially
distributed, that is, fs, (x) = Aexp (—Az), which is a Gamma distribution with
parameters n = 1 and A. Hence, the proposition holds for n = 1. Assume that
the proposition holds for a certain n € N*. Hence,

fsn+1 (l‘) = / fSn75n+l (t,.]? - t) dt

/ fs, (), fs,.. (x —t)dt by independence

B (M) X exp (—\t) ext (—\ (4 —
_/O A (A (= )t

_ Nexp () [T
= 1) /O thTdt
~ (Az)"Xexp (—Azx)

N n!

This concludes the proof. O

Now define the following counting process:

+oo
N t) == Z]lsi<t
i=1

We have N(0) = 0. This process counts the number of arrivals in [0, ¢[. In other
words, this process counts the number of contracts that have been underwritten
between 0 and ¢, which is a quantity of interest for our model.

Proposition 1.1.3. For anyt > 0, N(t) is Poisson-distributed with parameter
At.

Proof. We have P (N(t) =k) =P (Sk <tN Sky1 > t). Hence:

t
P(Sk§t05k+1>t):/ P(Sk41 > 1| Sk =2) x fs, (x)dz
0

:/O P (41>t —x) X fg, (x)dw

t k1
/0 exp (—A(t — :c))()\ ) Aexp (—Az)dx

(k—1)!
_ exp (—At)AF /t 1y
(k=D! Jo
= (/\I:!)k exp (—At)
This concludes the proof. U



Two key properties of the constructed Poisson process are its independent
and stationary increments. Those properties are the direct consequences of the
memoryless property of the exponential distribution.

The interest here is that the knowledge of what happened before, namely,
the number of underwritten contracts in the past, is not of any use for what is
likely to happen in the future.

Both propositions 1.1.4 and 1.1.5 are taken from [Ruw06].

Proposition 1.1.4 (Stationary increments). Let t > 0, s > 0, t > s. Then
N(t) — N(s) has the same distribution as N(t — s).

Proof. Assume that & € N arrivals occurred before s. Let’s denote by 77 the

waiting time between s and Siyi. The inter-arrival times after Siy; remain

identical, that is, equal to s;, ¢ > k + 2. For simplicity we will write 77 = sp44

for i > 2. Due to the memoryless property of the exponential distribution, 77

is exponentially distributed, that is, identically distributed as, and independent
n

from 77, ¢ > 2. Define S;, n > 1 such as S = >"." | 77. Hence, S; is gamma-

distributed with parameters n and A\ according to proposition 1.1.2. Thus,

P(N(t) — N(s) =i) =P (S} <t —s)—P (S5, <t—s)

We know from proposition 1.1.3 and its proof that the above calculation leads
to a Poisson distribution of parameters A(¢ — s), which concludes the proof. [

Proposition 1.1.5 (Independent increments). Let i > 2. For any 0 < t;_1 <
t; <tit1, N(tiy1) — N(t;) is independent from N(t;) — N(t;—1).

Proof. We will use the same notations as proposition 1.1.4. That is, Tfi’l repres-
ents the waiting time between t;_; and the first arrival after ¢;_;. Tlti represents
the waiting time between ¢; and the first arrival after ¢;,. Because of the memory-
less property, Tfi‘l and 7}' are exponentially distributed, and independent of
the other inter-arrival times. The associated sum of inter-arrival times from
t;_1 and t; respectively write Syt = > o1 75" and St = > p=1Tp'- They are
Gamma-distributed with parameters n and A. Denote Aj the following event:

{4}} = {[S;?*l <t — ti—l} \ [523;11 <t - tz‘—1”

We get:

,P(N(ti) - N(ti71) =knN N(tz) — N(tifl) = p) =P (A?C N A;’)—i—l)

The events A}; and A;“‘l involve disjoint inter-arrival times, that is, inde-
pendent inter-arrival times. Hence, we can separate those two events, which
concludes the proof. O



This last result will be used in the queuing system framework. Intuitively,
it states that conditional on N(¢) = n contracts underwritten between 0 and ¢,
the distribution of the underwriting times is uniform on [0, ¢[.

Proposition 1.1.6. Letn e N* and 0 < t; < --- < t, <t be defined as above.

Then, conditional on N(t) = n, the joint density of t1,--- ,t, is constant over
[0,t]. That is,
n!
P(tl,"' i ln | N(t) :’I’L) - m

In particular,

Pt | N(@)=1)= 1

Proof. Using the Bayes rule, we have,

PN({E)=mn|t1, - ,tn)P(t1, - ,tn)

Pt otn | N(t) =n) = P(N(t) =n)

To calculate P(ty,--- ,t,), we use,

n

Pltr, - tn) = [ [Pt [tica, - 1)

i=1
Recall that the increments are independent and identically distributed random
variables, that is, P(t; | ti—1,-+- ,t1) = P(t; | tic1) = Aexp (=A(t; — ti—1)).
Hence,

P(th e atn) =" €xXp (7>\tﬂ)

Since N (t) is Poisson-distributed,

(At)™ exp (—At)
n!

P(N(t) = n) =

Finally, the probability P(N(t) = n | t1,--- ,t,) is the probability that the
increment between ¢, and t,11, namely s,11, is higher than ¢ — ¢,,. Since s,4+1
is exponentially distributed, we obtain,
—+o0
Pspy1 >t —ty) = / Aexp (—Az)dz = exp (—A(t — t,,))

t—tn

This concludes the proof. O

1.1.2 Basic results on the non-homogeneous Poisson pro-
cess

The non-homogeneous Poisson process is a generalization of the homogeneous
Poisson process introduced above. The former allows the parameter A\, now
called the intensity function, to vary with time. The intensity function can be

10



perceived as the frequency at which contracts are underwritten. In the homo-
geneous case, this intensity is constant, meaning that contracts are underwritten
at the same frequency over time.

This assumption may be quite strong in some cases. One can think of ag-
gressive commercial offers, for which an increase of the underwriting rate is
expected. In this case, the intensity rate should be higher during the commer-
cial offer period, than usual. The inhomogeneous Poisson process proposes a
solution to take into account such varying rates. Then, in this section, we will
consider the intensity as a function of time. Hence A\ — A(t).

Definition 1.1.4 (Non-homogeneous Poisson process). Consider any collection
I = (L, - ,I,) of disjoint intervals on RY. That is, consider 0 < to < t; <
C < tp < 400, and set I; = [t;—1,t;[. Let A(t) be a positive and integrable
function over any finite interval I, that is [, X(t)dt < +oco. Let N(I) be a
counting process of the number of points on the interval I. N(I) is said to be a
non-homogeneous Poisson process if it satisfies the following assertions:

o N(I) is Poisson-distributed with parameter A(I) = [, A(t)dt

e [for any set T defined as above, N(I1), -+ ,N(I,) are independent. This
18 the independent increments property.

Note that the stationary increments property is not satisfied anymore. In-
deed, let’s get back to the aggressive commercial offer introduced above, and
say that this offer is active from time ¢; to ts, such that t5 — 7 < ¢1. Assume
that in normal time, the intensity is given by \,, and during the offer, it is
given, by A,. Then N(t3 —t1) and N(t2) — N(¢1) are not identically distributed.
Indeed, the former is Poisson-distributed with parameter A,t, while the latter
is Poisson-distributed with parameter \,t.

Fortunately, it is still possible to determine the joint distribution of the
occurrence times, that is, a result similar to proposition 1.1.6.

Proposition 1.1.7. Let t; < --- ,t, be the realizations of n random variables,
representing the occurrence times of a point process, such that 0 < t; < --- <
tn < t. Let N([0,t]) be the non-homogeneous Poisson process associated to
those occurrence times: T, = min{t € [0,4oc[, N([0,t[) = n}. Then the joint
distribution of Ty, - -- , T, writes:

P<t17 e ,t’ﬂ) = e_A(tn) H )\(tl)
i=1

Proof. We will prove this result by induction. We will first work on the cumu-
lative distribution, and derive it to obtain the distribution function.
Let’s prove the result for n = 1. We need to determine

P(Tl < tl) =1- P(Tl > tl)

11



Saying that the first event occurs after ¢; is equivalent to say that the number
of events that occurred before t; is zero. Hence:

P(Tl < tl) =1- P(Tl > tl)
=1—"P(N([0,t;]) =0)
=1—¢ M)
Taking the first derivative of the previous equation, one gets:
P(tl) = )\(tl)e_A(tl)

Let n € N. Assume that
P(th e 7tn) = eiA(tn) H )‘(tl)

Then one gets:
P(tla T 7tn7T’n+1 S tn+1) = P(TnJrl S thrl | tl; T 7tn) X P(tl, e 7tn)
= (1 - P(Tn+1 > tpt1 ‘ ty,--- atn)) X P(tlv’ v ,tn)

Saying that the (n + 1)'" event occurs after ¢,,; knowing that the n*® oc-
curred at t,, is equivalent to say that the number of events that occurred between
t, and t,41 is zero. Hence:

P(Tuir > tust | 1, 1 10) = PN ([t tusa]) = 0)
= 6_(A(tn+1)—/\(tn))

Hence,
'p(t17 N A A tn+1) _ (1 _ ef(A(tnﬂ)*A(tn)) X P(tlv .. 7tn)
Taking the first derivative, one gets:

P(tla e 7tn7tn+1) = )\(tn+1)e_(A(tn+1)_A(tn) X ,P(tlv e 7tn)
n+1

— o AMtnt1) H M)
i=1

O

Lemma 1.1.1. Let t; < ---,t, be the realizations of n random wvariables,
representing the occurrence times of a point process, t > 0 and T > t such
that t < t; < --- < t, < T. Let N([t,T]) be the non-homogeneous Pois-
son counting process associated to the occurrence times between t and T: T, =
min {7 € [t,+oo[, N([t, 7[) = n}. Then the joint distribution of Ty, - - -, T,, know-
ing that T occurs after t writes:

P(tla e 7tn | Tl > t) = ei(A(tn)iA(t)) H )‘(tl)
i=1

12



Proof. We will prove the result for n = 1, the induction step is the same as the
one in proposition 1.1.7.

Phi<ty|Ty>t)=1-P(Th >t | T1 > 1)
=1-P(N(t,t1]) = 0)
_ - (AG)-A®)

Taking the first derivative of the previous equation, one gets:

Pty | T > t) = Aty )e” AEI—A®D)
O

Proposition 1.1.8. Using the same notation as proposition 1.1.7, the joint
distribution of Th,--- , Ty, conditional on N([0,t]) = n writes:

n

Pltr, et | N(0.t) = m) = o [ A6

Proof. The Bayes rule writes:

PN(0,t)) =n | ty, - ytn) X Pty ,tn)

P(ty, - tn | N([0,2]) = n) = P (N([0,t]) = n)

The probability that n events occurred before ¢ knowing the instants of
occurrence of n elements before ¢, namely P(N([0,t]) = n | t1, - ,ty), is the
probability that no events have occurred between t,, and ¢, that is:

PN([0,t]) = n | t1,-- - tn) = P(N([tn, t[) = 0)

— o~ (A —A(tn))

According to definition 1.1.4,

e MOA®)"
n!

P(N([0,t]) = n) =

Proposition 1.1.7 leads to

n

Pltr, - tn) = e MO T AME)

i=1
This concludes the proof. O

Lemma 1.1.2. Using the same notation as lemma 1.1.1, the joint distribution
of Th,- - , Ty, conditional on N([t,T]) =n and Ty > t writes:

Pltr, - tn | N(LT) =nnTy > 1) = $HA(@)

13



Proof. The proof is the same as proposition 1.1.8. Using the Bayes rule, we get
the following three components:
PIN([t,T)) =n|tr, - ,to NTL >t) =P(N([t, T)) =n | t1, - ,tn)
= P(N([tn, T[) = 0)
— ¢~ (MT)=A(tn))

We then have,

PN(t,T)=n|T1 >t) =P (N(t,T)) =n)
e” WIM=ADI((A(T) = A(t)"
n!

Lemma 1.1.1 leads to
P(tla T 7tn | Tl > t) = ei(A(tn)iA(t)) H )‘(tl)
i=1
This concludes the proof. O

1.1.3 Introduction to Cox Processes

One known result about Poisson processes, is that the mean equals the vari-
ance. Often, data exhibits a variance that seems higher than the mean. This
phenomenon is called overdispersion. One common workaround to deal with
overdispersed data is to work with so-called Cox processes. Often called Doubly
Stochastic Poisson Processes, Cox processes are a generalization of the Poisson
process, letting the intensity or cumulative intensity function to be stochastic.

Definition 1.1.5 (Cox process). Let A(t) be a non negative stochastic process,
referred as the intensity process. Define the cumulative intensity process A(t) =
fot A(s)ds. Let N(t) be a counting process. Let (Fi)i>o be the natural filtration
of A(t). N(t) is said to be a Cox process if, conditional to (Fi)i>0, N(t) is a
non-homogeneous Poisson process satisfying:

e N(t) has conditional independent increments. That is, for 0 < s < t,
N(t) — N(s) | F; is independent of G = o(Ny,u < s)

e Conditional to Fy, the increment N(t)— N(s) has the following probability
distribution:

(A(t) — A(s)"

PN(t) = N(s) = k| Fi) = exp (— (A(t) — A(s)) =

The previous definition refers to conditional independency of the increments.
The following proposition, taken from [Liul2], will derive a condition on the
unconditional independency of increments.

14



Proposition 1.1.9. Let N(t) be a Cox process with cumulative intensity process
A(t). Then, N(t) has unconditional independent increments if and only if A(t)
has independent increments.

Proof. The general idea of the proof is presented in [Liul2], but is not detailed.
The idea is to work with covariance, and derive an equality that will prove the
condition. Let 0 < a < b < ¢ < d For simplicity, we will write N(d) = Ny

COV(Nd — Nc, Nb — Na)
—E[(Ng = NJ)(Ny — Na)] — E[Ng — NJJE[N, — N,]
=E[E[(Ng — Ne)(Np — No) | Fa]] = E[Ng — NJE [Ny, — No]

Since N (¢) has conditional independent increments, one can write:

E[(Ng— No)(Ny — No) | Fa] =E[Ng— Ne | FE[Ny — N, | Fd
= (Ad - AC)(Ab - Aa)

Moreover,

E[Ng — N] = E[E[Ng — N¢ | Fal] = E[Aq — A.]

Hence,

Cov(Ng — Ney, Ny — Ny)

=E[E[(Na — Ne)(Np — No) | Fal] — E [Ng — NJE [Ny — No|
— E[(Ag— A)(Ap — Aw)] — E[Ag — AJE[A — Al

— Cov(Ay — Ap, Ay — Ay)

Hence, the increments of the Cox process are unconditionally independent
if and only if the cumulative intensity process increments are independent. [

The choice of the cumulative intensity process is crucial. See proposition
1.1.11 for a convenient choice of the cumulative intensity process.

Proposition 1.1.10 (Overdispersion of Cox processes). Let N(t) be a Cox
process. Then V(N (t)) > E(N(t)).

The proof of the following result is borrowed from [Cas05].
Proof.
E(N (1)) =E (E(N(1)* | A®t))
=E (A(t) + A()?)
Then:



Substracting both equations, one gets:

O

Hence, any positive intensity process would enable to solve the overdispersion
issue. However, one convenient choice would be to use a Gamma process for the
cumulative intensity process. Indeed, a known result about mixing Poisson and
Gamma distributions is that it leads to a negative binomial distribution. We
will show that the same result applies with Cox processes and Gamma processes.

The following definition is taken from [Merl7b].

Definition 1.1.6 (Gamma process). Let a(t) be a non-negative function, and
b > 0. A cadlag process G(t) is a Gamma process if it satisfies the following
conditions:

e G(0)=0 a.s.
e (G has independent increments

o The increment G(t) — G(s), 0 < s < t is Gamma-distributed with the
following density function:

g(x) = T atwdn Efst a(u)du) gt ewdu—t o (*%)ﬂﬂh

a(t) is called the shape function, while b is called the scale parameter.

In the case a(t) = a, the Gamma process is said to be a homogeneous Gamma
process. Otherwise, it is a non-homogeneous Gamma process. In the homogen-
eous case, the increments are stationary, thus, the homogeneous Gamma process
is a Lévy process. However, the non-homogenous Gamma process is an additive
process, that is, the stationary increments property is abandoned, see [Merl7b]
and [AAAB19].

We now show the above result.

Proposition 1.1.11. Let N(t) be a Cox process, with a Gamma process as
cumulative intensity process. Then, the increment N(t) — N(s) 0 < s < t
follows a negative binomial distribution:

Dk + [fa(u)du) 1 b \E /1 e
PN - N() =) = e xklx(M> (m)

In particular, N(t) is a negative binomial process.
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Proof. Let A(t) be a Gamma process with parameters a and b. Let N(¢) be a
Cox process with cumulative intensity A(t). Let F; be the natural filtration of
A(t). Let g denote the density function of the increments of A(t). The law of

total probability writes:

P(N(t) — N(s) = k) = / P(N(t) — N(s) = k | Fy) x gla)dz
Definition 1.1.5 writes:

(A —Acs)) (A(E) — A(s k
P(N() ~ N(s) = k| ) = o202 (=R

Definition 1.1.6 writes:

g(z) = . zf; a(u)du) gIf ewdu=t o (_%)HR+

Hence, the integral can be written as:

+oo k f: a(u)du—1,—%
PN(t) — N(s) = k) = / ey F ¢ td
0

& ) pJ: a(wydup (f: a(u)du)

fOJFOO 67m(1+%)1'k+fst a(u)du—lda7

pJi e(w)dup (f: a(u)du) k!

Let v :x(l—i— %), then dv = (1—|— %) dz.

+o0 too
/ e—m(1+%)mk+‘f: a(u)dufldx _ / e ( v .
0 0 1+

f0+oo e—vvk+f; au)du—1 4,

>k+f: a(u)du—1 dv
(1+3)

- (1 + l)kﬁ’[st a(u)du
b

1 t
- k+fst (x(u)dur (k +/S a(u)du>

(1+3)
Hence,
r (k: + f; a(u)du) 1 1 1\ edwydu
PN - Nl =k) = I’(ﬁa(u)du) K (1+é)k.(b+1)
T (k + f: a(u)du) 1 b k 1 Tt a(u)du
- F(f;a(u)du> .k’!'<b+1> .<b+1)

O
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The previous proposition shows that any increments follows a negative bi-
nomial distribution. The mean of a negative binomial distribution with shape
parameter a and scale parameter b writes:

E(N(t) — N(s)) = / a(u)du - b—l—Ll : i = b/ o(u)du
s b1 s

The variance writes:

V(N(t) — N(s)) = /Sta(u)du- Ak (11)2 =bb+1) /t a(u)du
- s

Since the variance of the gamma process writes V(A(t) — A(s)) = ft a(u)du-
b2, proposition 1.1.10 is satisfied.

In this context, the Gamma process can be considered as a time subordin-
ator. That is, the gamma process modifies the time axis. As introduced in
[AAAB19], a Lévy process subordinated by a Lévy subordinator is still a Lévy
process. Similarly, a Lévy process subordinated by an additive process is still
an additive process.

Thus, since a Poisson process is a Lévy process, subordinating it to either
a homogeneous or a non-homogeneous Gamma process maintains the Lévy or
additive property. Hence, the negative binomial process is a convenient choice
to work with our data.
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1.2 The Queuing Theory

1.2.1 Introduction

Jean-Philippe Boucher and Guillaume Couture-Piché, in [BCP16], pointed out
that the use of queuing theory was well-suited to model the number of policy-
holders in an insurance portfolio. In this thesis, the framework is borrowed. Im-
provements are proposed in terms of arrival processes, as Boucher and Couture-
Piché restricted to homogeneous Poisson processes for simplicity purposes. An
emphasis is made on the variance of the number of policyholders, which is one
of the most important metrics in this thesis. We also show that the expectation
is consistent between the different models.

In this section, we will introduce the standard results of queuing theory, as
applied by Boucher and Couture-Piché, and we will generalize the results in
order to take into account non-stationarity in the arrival process, as well as
capturing the overdispersion.

The concept of queues is quite intuitive. Assume that you're shopping in a
supermarket. If many people proceed to checkout in a very short time inter-
val, the cashier won’t be able to handle the flow of customers instantaneously.
Thus, a waiting line, or a queue will form. A cash desk is called a server. The
ensemble composed of the queue and servers is called the system. Since people
are shopping in a different way, the time spent during checkout isn’t the same
for each customer. Hence the distribution of the time spent at the cash desk
will be called the service time. The time between each arrival at the cash desk
is called the inter-arrival time. Finally, the number of people leaving the system
at any time is called the output process.

The system can be characterized by the Kendall’s notations. For the purpose
of this thesis, we will restrict to the first three letters a/s/C. a represents the
probability distribution of the inter-arrival times. s represents the probability
distribution of the service-time. C represents the number of servers.

The simplest queue is the M /M /1 queue, where M stands for Markov. That
is, both the inter-arrival times and the service time are characterized by an
exponential distribution, while only one server can handle the queue.

This can be generalized by adding ¢ servers, this will form an M /M /¢ queue.
This would be a first model that could fit with our supermarket example, since
the supermarket would more likely employ more than one cashier.

The letter ¢ can be infinite. In this case, an individual entering the system
is instantaneously taken by a server. Hence no queue is formed. This type of
system is called an M /M /oo queue. This is what happens in an insurance con-
text. If you want to underwrite your insurance contract online, you can do it
instantaneously. You don’t have to wait for another person to finish its under-
writing to make yours. It works as if there were an infinite number of virtual
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general agents that can process your request instantaneously.

The advantage of the Markov assumption for the service time is its easy
manipulation. However, this might not be realistic. Hence, it’s sometimes sug-
gested to transform the second M into a GG, meaning General. That is, the
service time distribution is not exponential anymore, but any distribution with
positive support. For instance, an M/G/c queue is a queue where the inter-
arrival times are exponentially-distributed, the service time is distributed with
any distribution G, while ¢ servers can handle the flow of individuals entering
the system. Again, the introduction of a general service time is consistent in
an insurance context, as an exponential distribution is not likely to capture the
termination behavior of policyholders. One simple counter-example is to recall
that policyholders are more likely to cancel their policy by not renewing it,
instead of cancelling it at some random time. Hence, the hazard function is ex-
pected to show some yearly peaks, and thus violates the exponential assumption.

Compiling what has been said, it is natural to retain a queue with infinite
servers and with a general service time for an insurance application. The purpose
of the next part is to determine the output process of an infinite server queue
and to determine the number of busy servers at any time ¢. Three different types
of arrival process are considered, that are homogeneous Poisson, inhomogeneous
Poisson and Cox processes. The section 1.1.1 reminded the basics of Poisson
processes properties, that will be used in order to detail the short proof given
in [Mir63].

1.2.2 The model

The idea of applying an infinite server queue to model an insurance portfolio
is quite intuitive. The arrival process will describe the way policyholders arrive
in the portfolio. The service time will describe how long policyholders stay in
the portfolio. Some interesting features would be to access the number of un-
derwritten contracts in a given period, or to determine the number of insured
policyholders at a given time, and finally to determine the number of terminated
contracts during a given period.

This section introduces the main technical aspects of the infinite server
queues. First, the main results of the infinite server queue with homogeneous
Poisson process arrival are depicted. The proofs of the results are completely
taken from [Mir63], as they will be adapted to the non-homogeneous case in the
following section. Finally arrivals are adapted with Cox process, which allows
for more flexibility in the model, but will result in a lack of generality as no
closed formulas can be derived.
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1.2.2.1 Preliminaries and notations

An M/G/oo queue is characterized by exponentially-distributed inter-arrival
times, a general distribution for the service time, and an infinity of servers.
Since there are infinity of servers, the number of elements in the queue is always
zero. Hence, we need to study the number of elements in the system at any time,
and the number of elements leaving the system during any time interval. All
the notations and proofs are borrowed in their entirety from [Mir63]. The proof
of [Mir63] will be detailed, since intermediary results and slight modifications
will be needed for the adaptation to the inhomogeneous case.

Let t and T denote two real numbers such that ¢ > 0 and T" > 0. T rep-
resents the length of some time-interval. Let « (¢ + T') represent the number of
elements in the system at ¢+ 7T, and ¢ (¢, T) represent the number of departures
of the system between time t and ¢ + T'.

We assume that the system is initially empty at time ¢ = 0. It means that
at time ¢t = 0, no policyholders are in the portfolio. Since ¢ = 0 usually corres-
ponds to the starting time of the analysis, this hypothesis is unverified. That’s
why it is interesting to distinguish between two types of policyholders: those
who arrived before ¢, and those who arrived after ¢t. The following results are
valid for all policyholders that arrived after ¢, while for the ones who arrived
before, it is necessary to determine their residual survival time. This will be the
objective of section 4.2.1.

The inter-arrival time of elements in the system is characterized by an ex-
ponential distribution with mean % Denote by N(t,t') the number of arrivals
in the system between time ¢ and ¢'. According to propositions 1.1.4 and 1.1.5,
N(t,t") is Poisson-distributed with parameter A (¢’ —¢) and is independent of
N(s), s < t. Therefore, the number of arrivals between an interval of length T'

will be denoted N(T).

The service time is characterized by a cumulative distribution function H(x),
with x > 0. The arrival process and the service time are supposed to be in-
dependent, and the service time of an individual is independent of the service
time of all the other individuals.

Denote by:

e p(t,T) the probability that an element that entered the system between
[0, ] leaves between [t,t + T

e ¢(t,T) the probability that an element that entered the system between
[0,t] leaves after ¢t +T

e 7(t,T) the probability that an element that entered the system between
[t,t + T leaves between [t,t + T
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e 5(t,T) the probability that an element that entered the system between
[t,t + T leaves after ¢t +T

Proposition 1.2.1. p(t,T), q(t,T), r(t,T) and s(t,T) satisfy:

p(t,T) = %/0 (H(T + 2) — H(z)) do

q(t,T)zl/ (1—-H(T +x)) dex

t Jo
1 T

r(t,T) = T/o H(z)do
1 T

s(t,T) = ?/ (1- H(z)) dz

0
Hence, r(t,T) and s(t,T) satisfy r(t,T)+ s(t,T) =1

Proof. We will prove the result for p(t,T) and r(t,T). The proof is similar
for ¢(t,T) and s(t,T). Consider an arrival in the system at time s € [0,¢].
According to proposition 1.1.6,

_ !

Pls | N(t) =1) =

For this arrival at time s to leave between [t, t 4 T, its service time must belong
to [t —s,t+ T — s]. The probability of such an event is H(t+T —s) — H(t — s).
The law of total probability gives:

p(t,T):/O %(H(t—l—T—s)—H(t—s))ds

Denote x =t — s, we get, dz = —ds. Substituting s by x in the previous
equations gives:

p(t,T) = %/0 (H(T+z) — H(x))dx

Consider an arrival in the system at time s € [t,t + T]. According to pro-

position 1.1.6,
1
NT)=1)==
P(s|N(T)=1) = =

For this arrival at time s to leave between [t, t+T], its service time must belong to
[0,t+T—s]. The probability of such an event is H (t+1—s)—H(0) = H(t+T—s).
The law of total probability gives:

t+T
r(t,T) :/ Lo+ T— 5)ds
+ T

Denote x =t+T — s, we get, dr = —ds. Substituting s by x in the previous
equations gives:
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T
r(t,T) = %/0 H(z)dx
O

The multinomial distribution will be used in the proof of the output process.
It is a generalization of the binomial distribution.

Definition 1.2.1 (Multinomial distribution). Assume an experiment where k
outcomes are possible. The probability of each outcome i, 1 < i < k is (pi)]<;cp-
Assume that one repeats this experiment n times, each trial being independent
of the others. Denote by (N;'),,<; the random wvariables that represent the
number of time the outcome i was drawn. Hence, the family (N]*), o, ., writes

k
E N'=n
i=1

. Then, the family of random variables (N]*), ., ;. is said to follow a multinomial
distribution with parameters n and (p;)y<;cp-
Its distribution function satisfies:
n!

n _ .« e ’I’L: :7'”1...”}c
PNE =m0 AN =) = S P (s i)

1.2.2.2 Proof of the output process distribution

Let m and n be two integers. We will calculate the joint probability that m
elements are in the system at time ¢t + 7" and that n elements leave the system
between time ¢ and t + 7.

Proposition 1.2.2. Consider an M/G /oo queue. The joint probability that m
elements are in the system at time t +T and that n elements leave the system
between time t and t + T writes:

PHE+T)=mny(t,t+T)=mn)
efA(ST+qt) ()\(ST + qt))m efA(rTert) ()\(TT ert))n
m! n!

Hence, v(t+T) and ¥(t,t +T) are independent random variables, Poisson-
distributed, with parameters A(sT + qt) and \(rT + pt) respectively.

Proof. Let k € N and j € N. Assume that k arrivals occurred between time 0
and ¢, that is N(t) = k, and that j arrivals occurred between time ¢ and ¢ + T,
that is N(T') = j. Each of these k arrivals leaves:

e between [0, t] with probability 1 — p(¢,T) — q(¢,T)
e between [t,t + T with probability p(t,T)
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e after ¢t + T with probability ¢(¢,T)
Each of these j arrivals leaves:
e between [t,t + T| with probability =(¢,T")
e after ¢t + T with probability s(t,T)
If m elements are in the system at time ¢ + 7T, then:

e m — i of them are elements that arrived between [0, ¢], that is, belong to
the k£ elements introduced above

e j of them are elements that arrived between [t,t + T, that is, belong to
the j elements introduced above

Then ¢ is an integer satisfying 0 < ¢ < m. If n elements leave the system
between time ¢ and t + 7T, then:

e necessarily, j — ¢ of them are elements that arrived between ¢ and ¢t + T
since the others ¢ are still here. Hence j —7 >0

e the others n—j+14 come from arrivals between 0 and t. Hence n—j+1i >0

Hence, j is an integer satisfying ¢ < 7 < m + 4. Finally, if £ elements arrived
between 0 and ¢, that m —1 are still in the system at time ¢4 7 and that n—j+1
of them have left between ¢ and ¢+7", then k must satisfy (n—j+7)+(m—i) < k.
Mechanically, the k— ((n — j +4) + (m — i)) elements left from arrivals between
0 and ¢ have left between 0 and ¢.

e Let 71 (t +7T) be the number of elements in the system at ¢ + 7' from
arrivals between 0 and ¢

e Let 72 (t +7) be the number of elements in the system at t + T from
arrivals between ¢ and ¢t + T

e Let vy (t,t +T) be the number of departures between ¢t and ¢ + T from
arrivals between 0 and ¢

e Let s (t,t +T) be the number of departures between ¢t and t + T from
arrivals between ¢ and t + T

One can write v2 (t +7T) + 92 (t,t +T) = N(T). That is, conditional on
N(T), the knowledge of 5 (¢t + T') implies the knowledge of 12 (¢,¢ + T'). Hence,
conditional on N(T'), it’s necessary to determine P (y2(t,t +T) | N(T)) to com-
pletely characterize the arrivals between ¢ and ¢ + T'. Similarly, conditional on
N(t), the knowledge of both v (t +T') and v (t,t+ T) completely characterizes
the arrivals between 0 and ¢.

Then, the law of total probability gives:
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PHE+T)=mnyt,t+T)=mn)
m n+i “+o00

=22 X {7’(72:%’71 =m—i, 1 =n—j+i|N(t)=k N(T)=j)
i=0 j=i k=m+n—j
XP (N(t) = ks N(T) = ) |
(1.2.1)

The next steps will help to conclude on equation 1.2.1. The following equa-
tions have been highlighted in different colors to appropriately spot the terms
that will vanish and that will be involved in the different sums. Namely, the

terms will be involved in the sum indexed on k, the magenta terms will
be involved in the sum indexed on j, the cyan terms will be involved in the sum
indexed on ¢, and the olive terms will vanish.

Proposition 1.1.5 leads to:

P(N(t) =k, N(T) =j)=P(N(t) =k)P(N(T) =j)
e e T (AT)! (1.2.2)
J!

Two simplifications can be made:

e The number of elements in the system at ¢4 7 from arrivals between ¢ and
t+ T is independent from the arrivals between 0 and ¢. Namely, y2(t +7T')
is independent from N (t)

e The number of elements in the system at ¢t + T from arrivals between 0
and ¢, and the number of departures between ¢ and t + T from arrivals
between 0 and ¢ are independent from the arrivals between ¢ and t + T'.
Namely, 71 (¢t + T) and 91 (t,t + T') are independent from N(T')

Hence, one can write:

Plre=im=m-—idr=n—j+i| N()=k N(T)=j)
=P(r=i|NT)=j)xPn=m=-idr=n—j+i| N(t)=k)

The probability that an element is still in the system at ¢t + T conditional
on its arrival between 0 and t is characterized by a Bernoulli distribution with
parameter 7(t,T). Hence, considering j elements that arrived between ¢ and
t + T, the probability that ¢ of them are still in the system between at ¢t + T is
characterized by a binomial distribution with parameters j and s(¢,7T"). Thus,
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i . .
POp =i | N(T) =) = gy (L= )"
S
= ms’r]_z (1.2.3)
jL T Ty

il(j — i)l Ti

Similarly, considering k elements that arrived between 0 and ¢, the probab-
ility that m — ¢ of them are still in the system at ¢ + T and that n — j 4+ ¢ of
them have left between ¢ and ¢ + T is characterized by a trinomial distribution
with parameters k, p(t,T) and ¢(¢,T). Thus, according to definition 1.2.1,

Prn=m—ir=n—j+i|N(t)=k)
k!

= m—i, n—j+i 1—p— k—m—n+j
==+ k—m—nggy? P A0
— (qt) " (pt)n—It
(m—14)l(n—j+1)! mtn—j
(1.2.4)

First, let’s work on the sum indexed on k. Only equations 1.2.2 and 1.2.4
involve k, and the associated terms have been highlighted in . Isolating
the elements involving k in those equations, one can write:

+§ ()‘t)k k! )kfmfn%»j

X ~(1-p—q
| — — |
Mt k! (k—m—n-+j)!

+o0 k—m—n+j
. )\t> J .
_ \t m4n—j ( 1—p— k—m—n-+j
D e = T

(1.2.5)

+oo k
_ ()\t)ern*j Z ()‘]:') (1—p-— q)k:
k=0

— \mn—j pmtn—j At g=At(p+a)
The terms in ™77 from equations 1.2.4 and 1.2.5 vanish. The terms in e
from equations 1.2.2 and 1.2.5 vanish. The terms in 77 and j! from equations
1.2.2 and 1.2.3 vanish. Finally, the terms in A™*"~J in equation 1.2.5 and in
M from equation 1.2.2 lead to a term in A™*™.

Let’s now work on the sum indexed on j. Equations 1.2.2, 1.2.3 and 1.2.4
involve 7, and the associated terms have been highlighted in magenta. One gets:
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j! o n—j+i i T)i—% n—j+i
Zf % J: : '(TT)]_Z (pt) _ ’Ilf % (T ) (pt)

2 G e e G-
- Ty () (1.2.6)
JZ:; I )

To conclude the proof, let’s now work on the sum indexed on i. Equations
1.2.3 and 1.2.4 involve ¢, and the associated terms have been highlighted in cyan.
One gets:

DL S Tl

(m —)! m! il (m —1)!

=0 (1.2.7)

= x (sT 4 qt)™
m><(8 + qt)

Grouping the results from equations 1.2.5, 1.2.6 and 1.2.7, one gets the
following result:

PE+T)=mny(t,t+T)=n)

_ —)\T)\m+n —At(p+q) (TT + pt)n (ST + qt)m
=€ &
n! m!

_ AT(r+8) ymn g at(p+q) (1T + PO (T + )™ (1.2.8)
B n! m!
B e—)\(sT-‘rqt) ()\(ST + qt))m e—)\(7-T+pt) ()\(TT +pt))n

1.2.2.3 Adaptation to the non-homogeneous case

The assumption of a constant arrival rate is often false for some applications.
Many systems show that the arrival rate varies with time. For instance, the
subway is more likely to be full during peak hours, and not so full at any other
time. This variation of people taking the subway could be well captured by a
varying arrival rate.

M/G /oo queues with a varying arrival rate are called M;/G /oo queues. In
those conditions, we will adapt proposition 1.2.2 and its proof, and see that the
result is nearly unchanged.

Let’s first adapt the proposition 1.2.1.

27



Proposition 1.2.3. In the non-homogeneous case, p(t,T), q(t,T), r(t,T) and
s(t,T) satisfy:

p(t,T) = ﬁ /0 Mt — 2) (H(T + 2) — H(z)) da

q(t, T) = Ait)/o At—2)(1—H(T +x))dx

1 T
r(t,T) = AT - A()/ At +T —z)H(x)de
1
“(T) = ST Rw //\H—T—a:(l—H( )) da

Hence, r(t,T) and s(t,T) satisfy r(t,T) + s(t,T) =1

Proof. We will prove the result for p(¢,T) and r(¢,7). The proof is similar
for q(¢,T) and s(¢,T). Consider an arrival in the system at time s € [0,¢].
According to proposition 1.1.8,

Pls| N (04D = 1) = 3

For this arrival at time s to leave between [t, ¢+ T, its service time must belong

to [t —s,t+ T — s]. The probability of such an event is H(t+7T — s) — H(t — s).
The law of total probability gives:

p(t.T) :/0 X((j;(H(HT—s)—H(t—s))ds

Denote x = t — s, we get, dr = —ds. Substituting s by x in the previous
equations gives:

p(t,T) = Azt)/o Mt—z)(H(T +2z) — H(z))dz

Consider an arrival in the system at time s € [¢t,t + T]. According to pro-
position 1.1.8,

A(s)

P(s| N([t,t+ 1)) =1) = At +T) - A(t)

For this arrival at time s to leave between [t, t+T], its service time must belong to
[0, t+T—s]. The probability of such an event is H (t+T—s)—H (0) = H(t+T—s).
The law of total probability gives:

4T s
r(t,T) = /t A“_‘_;E))_A(t)H(tJrTs)ds

Denote x =t+T — s, we get, dr = —ds. Substituting s by x in the previous
equations gives:
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r(t,T) = t+ T —x)H(x)dz

1 T
At+T)—A() /0 Al
O

The objective of the next proposition is to generalize proposition 1.2.2. The
desired output is the one depicted in [DQLD19].

Proposition 1.2.4. Consider an M;/G /oo queue. Let
pi(t,T) = s(t, T) (At +T) = AR)) + q(t, T)A(?)

wo(t, T) =71, T)(At+T)— A(t)) + p(t, T)A(t)

The joint probability that m elements are in the system at time t + T and that
n elements leave the system between time t and t + T writes:

e (T) (1 (8, T))™ e Mo T) (i, (t, T))"

POy(t+T)=mnyt,t+T)=n)= m! n!

Hence, y(t+T) and ¥(t,t +T) are independent random variables, Poisson-
distributed, with parameters p;(¢,T) and po(t,T) respectively.

Proof. The proof is similar to the one derived for proposition 1.2.2. Hence, we
will simply modify the equations 1.2.2, 1.2.3 and 1.2.4.

Equation 1.2.2 can be rewritten as follows:

P (N([0,t]) = k, N([t,t + T[) = j)
=P (N([0,t)) = k)P (N([t,t + T) = J)
) e~ (AE+D)=A®) (A (¢ + T

1.2.9
) —A®) 29

J!

Equation 1.2.3 can be rewritten as follows:

Pya=i| N([t,t+T[) = j)
! i j—i
= 2'0]7_1)'5 (1—s)
! i j—i
J (A +T) — AW (AL +T) — Ay~
TG =) At +T) —A@))

(1.2.10)

29



Equation 1.2.4 can be rewritten as follows:

Pln=m—i,py=n—j+i|N(Et)=k)
k!
m—i)l(n—j+i)(k—m—ntjl"

m—ipn—j—i-i(l —p— q)k—m—n-l-j

(m—49)!(n—741)!

(gA ()™ (pA(1)" 7+

X A\(/)m tn—7j

(1.2.11)

Performing the derivation of equation 1.2.1 will lead to result in the exact
same way. O

1.2.2.4 An extension to the Cox process

As for now, no closed formula can be obtained if the arrival process is a Cox
process. Hence, the generalization of the queuing framework to Cox arrival pro-
cesses is only possible through numerical approximations.

That is, one first needs to simulate the Cox arrival process. Then for each
arrival, a service time is simulated according to the service time distribution.
Then, the number of people in the system can be estimated by counting the
number of individuals in the system at any time ¢. The departure process can
be estimated by counting the number of departures inside any time interval.

In this study, this numerical approach will be retained. However, the nu-

merical results will be compared to the theoretical ones for the arrival process
only, as they are the only ones available.
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Chapter 2

Estimation

In this section, the general framework to fit the data is presented. Specific
applications and examples will be presented and derived in section 3.

2.1 The data

The purpose of this model is to represent the behavior of a policyholder in-
side an insurance portfolio. The insurance portfolio will be the system. The
underwritten time of a policy will be associated to the arrival time in the sys-
tem. Since no particular "waiting time" is required to underwrite a contract,
the use of an infinite server queue is justified. The time spent in the portfolio
until termination of the contract will be associated to the service time. All of
our policyholders are assumed to underwrite their policy independently and at
disjoint points in time. Moreover, their service time is assumed to be independ-
ent, and independent of their arrival time. Under those conditions, the model
described above applies.

Such independence assumptions enable to fit the service time distribution
and the arrival time process independently.

The theory introduced above would require the knowledge of each arrival
time, provided that these arrival times do not match. This hypothesis is viol-
ated in our data since the underwritten date is rounded at the day the contract
was signed, and not at the exact time. Hence, even though reality could be
represented by a point process, our data show an accumulation of points at
certain dates since many policyholders have signed their contract at the exact
same day. This accumulation issue has been addressed in quite a few research
papers. One turnaround is to consider arrivals in bulks (or batches). The reader
could refer to the following papers for further readings on this subject [DP19],
[Sha66] and [PW12].
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However, our data are not real batch data, since the probability that two
policyholders underwrote their contracts at the exact same time is negligible.
Thus, to overcome this issue, we will fit our model considering block data, for
instance using daily data, and we will count the number of arrivals during each
time period.

2.2 Estimating the intensity function for the ar-
rival process in the homogeneous and inhomo-
geneous cases

Let [0,7] be the observed period, and let 0 = tg < ¢, < -+ < t, = T be
n disjoint points in time. Let ki,---,k, be the number of arrivals observed
during the period [t;, t;y1].

Let L(p) denote the likelihood function, and p be the parameters of the
cumulative intensity function A(¢). According to definition 1.1.4, one gets:

Lk, kn,p) = PG AN ([tiz1, ti[= Fi})

|

P (N[ti—1,t:[= ki)

i=1

kq
_A(ti—l,tm) M

€
k;!

I
=

1

~.

The second equality is obtained using the independence of the events, see
definition 1.1.4.
The log-likelihood writes:

n

In (£ (kj], L ,k‘n, p)) = Z [—A(ti_l,ti) + ki In (A(tl_l,tz)) —1In kz']

i=1

Under certain regularity assumptions on A with respect to p, the optimal
parameters will be obtained by minimizing the negative log-likelihood, that is
by solving:

VP (_ln<ﬁ(k1a"' 7knap))> =0

2.3 Estimating the subordinator parameters for
the arrival process in the Cox case

We use the same notations as the ones introduced in 2.2. We will consider
the non-stationary case, with the time-dependent shape function. Let ap(t) be
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the shape function, b the scale parameter, and p the parameters of the shape
function. According to proposition 1.1.11, the likelihood writes:

L(ky,- o kn,p,b) = P (Mo {N([ti—1, ti[= ki})

The log-likelihood writes:

In (‘C (kla T 7knap7b))

-y <ln (r (ki + /ti ap(t)dt>> “n (r </t ap(t)dt>> - 1n(l<:i!)>

+ z”: <kl In(d) — kiln(b+1) —In(b+ 1) /ti ap(t)dt>
i=1

ti—1

The optimal parameters will be obtained by minimizing the negative log-
likelihood, that is by solving:

VP (7111(,6(]{}17 aknapab))) =0

2.4 Estimating the survival function

The estimation of the survival function lies on the standard techniques used in
life insurance for instance. Indeed, our portfolio comprises policyholders who
have cancelled their insurance policy during the observation period, while others
have not. Hence, we face right-censored data.

The standard non-parametric estimator of Kaplan-Meier can be used to fit
the survival function. The inconvenience of the Kaplan-Meier is that it cannot
be used for extrapolation purposes. This is a major issue, since it is mandatory
for our model to know the exact departure time of each policyholder, in order
to accurately estimate the departure process.

Two workarounds can be used to solve this issue:
e Use a fully parametric model

e Use a semi-parametric model
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2.4.1 The fully parametric model

Let H(x) denote the survival function, h(z) the associated distribution func-
tion, and q the parameters of this distribution. The event characterized by the
observation of the cancellation is modeled by the indicator function ¢§;, where
6; = 1if the event is observed for individual 7, and §; = 0 if the data are censored.

Let X; be the survival time of individual 7 provided that the event has been
observed, otherwise X; = T — u;, where u; denotes the underwriting time for
individual 1.

For an individual ¢, the probability of the realization (x;,d;) writes:

L(x;,0;) = h(a:i)‘siH(xi)l—éi

Indeed, if the event is observed (§; = 1), then the probability to show the event
at time x; is h(x;). If the event is not observed (§; = 0), we only know that the
individual has survived at least z;, the probability being S(z;) in that case.

In our case, we have assumed that all our individuals are independent, hence
the likelihood writes:

n

ﬁ((xla 61)7 T (xna 611)7 (l) = H h(xi)éiH(xi)l_éi

.
Il
_

Az)* H ()

|

@
Il
-

H
show the event at time x + dx provided that the individual survived up to x.

The negative log-likelihood writes:

where A\(z) = h((‘?) is called the hazard function, and models the probability to

n

—In(L((z1,61), (T, 6n), @) = — Z [In (H () + 6; In (A(2))]

i=1

Under certain regularity assumptions on H and A with respect to q, the
optimal parameters will be obtained by minimizing the negative log-likelihood,
that is by solving:

Vq (— In (ﬁ((l‘l, 61)7 Tty (l‘n, 6“)’ CI))) =0

2.4.2 The semi-parametric model

In some cases, it might be convenient to use a semi-parametric model to fit the
survival data. By semi-parametric, it should be understood a non-parametric
survival curve for survival between 0 and some time ¢, and a parametric survival
curve for survival longer than ¢. Constraints are added in order to ensure the
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continuity of the survival curve.

Such solutions have been studied in the medical field in [GGC93|. This art-
icle depicts the most simple way to extrapolate non-parametric survival curves
with parametric survival curves. The solution has also been formalized more in
details in this article [GTP13].

The main idea consists in setting a threshold s > 0, and fitting a non-
parametric survival curve on [0, s[, and fitting a parametric survival curve on
[s,+oo[. This threshold s can be set using expert judgements, or using statist-
ical tests, as derived in [GTP13|. The reader is invited to refer to this article
for further development on this subject, as the theory won’t be reported here.

Formally, this model consists of estimating the survival function as follows:

Hyop(t) fort < s
H(t) = , 2.4.1
(*) {IE‘?S)HPU) fort > s ( )

where, Hxp denotes the Kaplan-Meier estimator, and H,, denotes the para-
metric estimator.

In practice, the parametric estimator is estimated the same way as in subsec-
tion 2.4.1. This semi-parametric approach will be the one retained in our model.
Indeed, the reader will see that the shape of the survival function doesn’t ex-
hibit the same behavior for short survival and long survival. The transition is
smooth enough to properly fit the parametric tail of the survival curve, which
justifies its use.
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Chapter 3

Inference and simulation

3.1 Presentation of the data

3.1.1 General presentation

To illustrate the theoretical concepts introduced in the first sections, we will use
some home insurance data to fit the model. This database has been anonym-
ized: none of the following figures and results can be used for other purposes
than illustrating the model.

The data basis comprises 187,992 contracts underwritten between 01,/01,/2016
and 01,/10,/2020.

The data basis contains 4 fields:
The contract number which is unique across our data base.

The underwriting date of the contract Note that it corresponds here to
the date of effect of the contract, that is, the date at which the contract
is at risk.

The cancellation date of the contract This date can either be a real date,
if the cancellation event occurs, or NA if we face right-censored data. Same
as above, this date is the day at which the contract is not at risk anymore.

The contract annual premium The annual premium is assumed to be con-
stant over the insurance period. This is a strong hypothesis that will be
discussed in section 5.

As introduced above, working with a finite time-window leads to right cen-
sored data. That is, the cancellation date must not be known for a policyholder
that might cancel his policy after the last observation date. Hence, we have
added two columns to our data:
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The contract duration in days It is defined as min(C;,T;), where C; de-
notes the observation time of insured 4, and 7T; the underwritten time of
insured 1.

A censoring indicator This is a boolean, returning 1 if the cancellation oc-
curs within the time frame, and 0 if the cancellation of the contract occurs
after the last observation date

3.1.2 The number of contracts

Figure 3.1 shows the number of underwritten contracts per day in the portfolio.
Some patterns appear. First, it can be appointed from the peaks, that most
contracts are effective at the beginning of each month (on the first day), which
is quite common in an insurance context. Second, the peaks of both months of
May and November seem lower than the ones from other months. One inter-
esting point is that the period going from beginning of 2016 to mid-2017 has
a lower underwriting activity than the period going from 2018 to 2020. The
transition between both periods seems to be linear (from mid-2017 to beginning
of 2018). This could translate some efforts made by the insurer to increase the
underwriting rate.
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Figure 3.1: Number of underwritten contracts per day

For consistency purposes, it is preferable to work with as-if data. This
process requires to transform the data before 2018 to data that look like 2018
and after data. In order to know how the data have evolved over time, it could
be interesting to look at the moving average of the number of underwritings per
day. Let k, k even, be the width of the rolling window, and (NV;)1<;<n be the
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number of underwritings per day. Then the rolling average is defined, for p > k,
by:

1 pt+%
Tp = % Z Nz
i=p—5+1
The choice of k is critical. Indeed, some very local variations can be observed
in the data set (peaks at the first day of each month, low activity on Sundays,
etc.). Similarly, working with a large k& would lead to an inaccurate smoothing.
Let’s choose k = 100.

Figure 3.2 shows the rolling window in red. One can see that the linear
trend seems to start in May 2017, and that it ends in October 2017. Those
two thresholds have been plotted in red on figure 3.2. Recall however that the
rolling mean introduces a lag of g, that is, the red curve is shifted by 50 units
to the right. For simplicity purposes, we will then assume that the linear trend
starts in March 2017, and ends in August 2017.
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Figure 3.2: Number of underwritten contracts per day and rolling mean with
k=100

The idea is then to adjust the number of underwritings to have homogen-
eous historical data. Let m; be the average number of contracts underwritten
between 01/01/2016 and 28/02/2017, and msy be the number of underwritten
contracts between 01/09/2017 and 31/12/2019. Then the adjusted number of
contracts between 01/01/2016 and 28/02/2017 will be the original number of

mo

contracts multiplied by - Similarly, the adjusted number of contracts between
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01/03/2017 and 31/08/2017 will be the original number adjusted by the factor

(1_”%2)“%
mq mq

with 2 = 0 being 28/02/2017 and = = 1 being 01/09/2017. The corrected un-
derwriting numbers are depicted in figure 3.3.
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Figure 3.3: Number of adjusted underwritten contracts per day

Finally, looking closer at a specific year through figure 3.4, it seems that the
number of underwritten contracts per day of week is quite constant through all
business days, with a lower rate during the weekends.

Unsurprisingly, much lower activity is recorded on Saturdays, and even less
on Sundays. One could take into account such details for fitting the model,
since specifying an intensity function or shape function that could match such
patterns would perfectly work. However, one should take care about over-
parametrization, which leads to difficult parameter estimations, or over-fitting
problems.

Some turnaround would be to work with aggregated, say monthly or yearly
data. Indeed, all daily effects depicted in figure 3.4 will completely vanish, as one
week approximatively shows the same patterns as another. However, we would
only have very few points to fit the model, which would lead to high estimation
error. Having this in mind, and for the modeling purpose, it is preferable to
work with individual data. It will enable to have much more insight on how
customers behave throughout the year. Individual data are getting more and
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Number of underwritten contracts per day in 2018
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Figure 3.4: Number of underwritten contracts in 2018

more popular, since taking advantage of all available data enables to capture
all the information available on the risk. Such a practice is widespread on the
claim side, with for instance, individual claim reserving. See for instance [BD17].

Hence, for training the model, we will retain the time frame going from
01/01/2016 to 31/12/2019, that is, 4 years of historical data.

Figures 3.5, and 3.6 respectively show the number of terminated contracts
per month, and the number of contracts in the portfolio per day. The number
of terminated contracts per day also shows peaks during the first day of each
month, which are much higher than the ones on the underwriting side. This can
be explained by the following arguments: a policyholder is more likely to cancel
his policy on a first day of the month even if he didn’t underwrite his contract
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Figure 3.5: Number of terminated contracts per day
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Figure 3.6: Number of contracts per day
on the first day of a month, because premiums are usually paid on a calendar
month basis. The idea here is that if a policyholder underwrites a contract,
say on 11/09/N, then he will pay 2/3 of his monthly premium for the month of

September. His underlying policy anniversary date will be set on 01/09/N.

Thus, in this thesis, we will call the anniversary date of a contract the first
day of the month at which the contract was underwritten.
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It is possible to create two additional columns in the dataset:

The corrected termination date Let d denote the day at which the contract
has been underwritten. The corrected termination date is defined by the
actual termination date, to which we add d—1. The purpose of this field is
to properly identify the policyholders who have cancelled their contracts
at their anniversary date, by removing the bias introduced by leap years
(except for people who underwrote their contracts on February 29, whose
number is negligible). Indeed, to identify those people, it just suffices to
check the equality between the underwriting day and the corrected ter-
mination day, and the underwriting month and the corrected termination
month.

An indicator for anniversary date cancellation It is a direct consequence
of the previous point, now that those people can be easily identified.

Going back to figures 3.3 and 3.5, it seems that cancellation peaks are much
less volatile than underwriting peaks. That is, the survival curve plays the role
of a smoother.

Finally, the number of contracts in the portfolio per day seems to vanish all
the variance of the underwritten and termination processes. Indeed, quite a low
variability can be observed, and all patterns have completely disappeared from
the plot. In that case, it will be interesting to see if the Cox process, used to
capture the overdispersion on the underwriting process, has any impact on both
the output process and the number of policyholders at risk in the portfolio.

3.1.3 Survival data

Survival data refer, for each policyholder, to the time at risk in the portfolio.
It can be known if cancellation is observed during the observation period, or
right-censored if such an event has not been observed during the observation
period.

Some standard way to get information about survival curves, is to use the
Kaplan-Meier estimator, see [KM58|. Often used in life insurance, its use is
getting more and more widespread, even in the non-life area. In the context
of customer lifetime in an insurance portfolio, survival data have been used by
both [BCP16] and [Wanl5].

[BCP16] has focused on a fully parametric approach, from which we will
borrow the form of the survival function, to fit the tail of our semi-parametric
survival curve. On the other side, [Wan15] has focused on using a Cox propor-
tional hazard model, to capture how survival differs on contracts characteristics.
Such a study could be very valuable, and will be discussed in section 5. However,
for the purpose of this thesis, we will stick to a simple framework, as introduced
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in 2.4.2. Complexity could be added in further research on this topic, by taking
into account covariates.

Figure 3.7 depicts the overall survival curve, as estimated by the Kaplan-
Meier estimator. On this plot, one can see 31 curves, each corresponding to the
survival curve for the group of people having underwritten their contracts on
day i of the month, 1 <+ < 31. Those curves reinforce the idea behind which a
policyholder who didn’t underwrite his contract on the first day of a month, is
more likely to cancel his contract the first day of a month rather than an other
day.
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Figure 3.7: Kaplan-Meier estimator by day of underwritings

Two important information can be taken away from this chart:

e One can see vertical steps: usually contracts are annual contracts, hence
all people who didn’t renew their contract at their anniversary date are
gathered in all those vertical steps. This is referred as non-renewal in
[Wanl5].

e On the opposite side, policyholders are free to cancel their contract at any
time they want, which corresponds to the smooth parts of the chart. This
is referred as cancellation in [Wan15].

Surprisingly, the smooth part of the first year of survival doesn’t show the
same pattern as the other smooth parts, as it is concave instead of convex. This
particular shape motivates the use of a semi-parametric survival curve, as a fully
parametric approach would imply overestimating the cancellation rate.
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Both cancellation and non-renewal are well-captured by [BCP16], through
their parametric survival function:

S(x) = e 1eplel (3.1.1)

In this approach, = represents the duration of the contract in years. The
term p represents the shock that is applied to the survival function as soon as
the integer part of & changes, that it, at each anniversary date of the contract.
This is the non-renewal. Cancellation is modeled through a standard exponen-
tial survival curve, parameter  representing the hazard rate.

This survival function will be retained for modeling the tail of our semi-
parametric survival curve.

3.2 Fitting the survival function

3.2.1 Likelihood

Recall that the survival function of equation 3.1.1 is discontinuous. That is, the
associated hazard function is not defined when z is an integer. Indeed, for any
xo €N,

lim S(z) = e M®op™0~t £ lim S(zx) = e 1*0p™o

Tr—rT0o T—To
r<xo x>0

Thus, the general setting of section 2.4.1 does not apply here. Fortunately,
one of the key assumptions in the model is that the service time (namely the time
during which a policyholder is insured) is independent of the arrival process. It
means that whatever the arrival process, the insured period is independent of it.

In this case, we can rely on [BCP16]. We will provide a bit more details on
how the likelihood is obtained. Let’s consider two events:

e A contract is cancelled at the anniversary date of the policy

e A contract is cancelled at a different date than the anniversary date of the

policy
Let t1,ta, - ,ty, 0 < t; < --- < t, < --- be event times, as introduced
above. Borrowing the notations of [BCP16], denote by Wiy, Ws,--- W, the
number of policyholders in the insurance portfolio right before ¢1,t2, - ,,.

The probability that ¢; is a cancellation at a different date than the an-
niversary date, is the probability that among the W; policyholders, all of them
have survived at least t1, and a few of them have renewed their contracts if the
anniversary date fell in the interval [0,¢1]. Let’s denote the latter case by h(t1)
using [BCP16| notations. The former case can be rewritten as the probability
that the minimum survival time of the W7 policyholders is ¢;. In this case, what
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one needs to determine is the density of the random variable <m<ir‘}v T;. Using
S Wa
the cumulative distribution function of this random variable, we get:

IP’( min Ti§t1> :1—]P’< min Ti>t1)
1<i<W,y 1<i<Wy
Wy
=1- HP(TZ > tl)
i=1
Wi
=1- e
Il
=1— e—’YW1t1
Taking the first derivative of this cumulative distribution function with re-
spect to t1, one gets the distribution function

f min T} (tl) = 7W1677W1t1
1<i<Wy
Using the memoryless property of the exponential distribution, one gets in
a more general setting, Vp € N,

f min Ti(t1):’}/Wpe—7WP(tp_tpfl)

1<i<Wp

The probability that ¢; is a cancellation at the anniversary date of the con-
tract is the probability that among all the policyholders that have their contract
anniversary date that falls between [0, ¢1[, that is h(¢1), exactly one of them has
not renewed it. Since the probability of renewing the contract is p, then the
probability of the event of interest is p"(*1)=1(1 — p).

We are now clear on how the likelihood was obtained in [BCP16]. As the
end of the calculation is quite clear in the article, we can directly use the final
results of the parameters estimators using equations (4.4) and (4.5) of [BCP16],
that is:

5= Z§AT~ (3.2.1)
e Tilnl-e@ (3.2.2)

ST

where, A denotes the number of contracts that have been cancelled at a dif-
ferent date than the anniversary date, () denotes the number of contracts that
have been cancelled at the anniversary date of the contract, and £ denotes the
total number of contracts in the database.
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It is worth commenting on censoring. While taking into account censoring
was clear in section 2.4.1, it is not straightforward here. The idea here is that
censoring is captured through W;. Recall that W; denotes the number of con-
tracts in the portfolio right before an event. It is then a measure of the exposure
of the portfolio, and could be understood as the number of individuals at risk
in a standard survival analysis. That is, W, captures the loss of observation of
individuals, and thus captures censoring.

3.2.2 Simulating the survival function

Simulating the survival function lies in the standard techniques of random vari-
ables simulation. The general idea is to simulate a sample realization of a
random variable using a sample realization of a uniform random variable, and
inverting the cumulative distribution function.

The method, called the inverse transform method, lies in the following the-
orem.

Proposition 3.2.1 (Inverse transform method). Let F' be a cumulative distri-
bution function. We define the generalized inverse of the cumulative distribution
function by F~Y(u) = inf{z, F(z) > u}. If U is a random variable uniformly
distributed on [0,1], then the cumulative distribution function of X defined by
X=F1U)isF.

Proof. See [Sigl0]. O

The idea of the general inverse lies in the fact that some cumulative distri-
bution functions might have discontinuities. In that case, the inverse might not
be defined, and one needs to rely on the generalized inverse function.

For the exponential distribution, an exact formula exists for F'~!. Recall that
the cumulative distribution function for an exponential distribution is defined
by F(z) = 1—e**. That is, F is continuous and strictly increases. According
to the intermediate value theorem, F' is bijective, and one can find the exact
inverse cumulative distribution function for F. Let u € [0, 1].

o In(1—wu)

Flz)=u <= 1—¢e" By

=u <= In(l-—u)=—-Ir < z=—

Thus
F~Yu) = —M (3.2.3)

Simulating an exponential random variable is then quite straightforward and
time-efficient, as one simply needs to simulate samples from a uniform random
variable, and then apply the function F~1.
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Unfortunately, our cumulative distribution function doesn’t show such de-
sired properties. It is not continuous, and thus not bijective. Indeed, this
survival function shows some steps every year. No closed-form formula can be
obtained for the inverse of this function, and the simulation algorithm can be
quite complex.

A naive solution would be to simulate a uniform random variable, and find
the associated value of the survival using some dichotomy algorithms. Two
major issues may arise from this solution:

e The outcome would not be exact. The dichotomy algorithm would only
return an approximate value of the survival time

e The time to run the simulation would be outstanding. The dichotomy
algorithm would need to be repeated as many times as the number of
simulations we want to perform. Moreover, its time-performance depends
on the precision desired by the user. Finally, it also depends on the initial
guess.

Of course, one could think of alternative root-finding algorithms, that are
much more time-performant than the dichotomy, but the general idea here is to
state that repeating such algorithms as many times as the number of samples
required would not be suitable for a large portfolio of policyholders. One needs
to find an alternative.

Fortunately, our survival function is desirable enough to still be able to
perform simulations with:

e An exact result
e Good time performance without relying on root-finding algorithms

The general idea of the algorithm relies on the fact that one doesn’t need
to simulate up to an indefinite time horizon. For instance, for the purpose of
capital requirements, one needs to simulate up to a l-year time horizon. For
others reasons, one could need to project further the simulations, but it would
still be a finite horizon. If one is interested in projecting the portfolio until run-
off, that would theoretically require to project up to an infinite time horizon.
This is actually not the case, as one could actually project up to the maximum
number of years a man has ever lived, which still makes the projection time
horizon finite. Thus this hypothesis would be valid.

Thus, let’s say that we are interested in projecting survival times from 0
years to some arbitrary fixed time horizon h years. That is, F' is restricted to
[0,h]. The main difference between our survival function and a standard ex-
ponential cumulative distribution function is the steps. However, between two
steps, our survival function is still exponential. Thus, by calculating the up-
per and lower bound of the survival function at each year y; € [0, h], then one
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Figure 3.8: The survival function

knows the intervals [uy(yi+1), w(yi)], w(y:) = F(¥i), wu(yit1) = Fo(Yiv1)
under which the inverse cumulative distribution function is exponential. See
figure 3.8. The red points denote the points F.,(y;+1), while the blue points
denote the points F(y;).

We are now able to cut the survival function in 2 x A intervals:
o [1,uy(y1)] and [uy(y1), w(y1)]
o [w(y1), uu(y2)] and [uu(y2), wi(y2)]

o ctc.

Consider a sample realization u € [0,1], from a uniform distribution. Then,
if u falls in an interval of the type [u;(y;), uu(yi+1)], then one knows that the
survival lies in the exponential part of the survival function, and one can de-
termine the associated survival value using the inverse transform method and
the exact inverse cumulative distribution function derived in equation 3.2.3. If
u falls in an interval of the type [ty (y;), ui(y;)], then one knows that the survival
lies in the step part of the survival function, and one knows exactly the number
of years the contract survived in the portfolio.

Such an algorithm is much more powerful, time-efficient and straightforward

than the naive one exposed earlier. However, to vectorize such operations, they
require to store large matrix, and then a lot of memory.
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3.2.3 Fitting

An interesting feature of figure 3.7 is that, depending on the day of underwrit-
ing, the survival curves do not match in the exponential part. Intuitively, it
means that the v parameters may differ with respect to the day of underwrit-
ing. The fitted curve would look like figure 3.9.
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Figure 3.9: Survival function with constant -

Taking such a specificity into account would lead to the introduction of 31
parameters. To avoid an over-parametrization and overfitting issue, it is prefer-
able to use the same ~ parameter for all survival curves. The same reasoning
could apply to the parameter p. Similarly, only one p will be used.

Recall that the anniversary date of a contract has been defined as the first
day of the month at which the contract has been underwritten. That is, for a
contract underwritten on 03/02/N, then the anniversary date is set at 01/02/N.
The first step to estimate v and p is to determine A and @ (see equations 3.2.1
and 3.2.2). The determination of A and @ requires the identification of the poli-
cyholders in our database that have cancelled their contracts at the anniversary
date or not.

To do so, let m be the underwriting month of the contract, and d the under-
writing day of the contract. Let ¢ be the termination date of the contract (if the
data are not censored), and define the shifted termination date by t; = t+d—1.
Then, if the day of the shifted termination date equals d and if the month of
the shifted termination date equals m, then the contract is cancelled at the
anniversary date, and this contract contributes to . If not, but if the con-
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tract is still cancelled, then the contract is terminated at a different date than
the anniversary date, and this contract contributes to A. If the contract has
not been cancelled yet (censored data), then it doesn’t contribute to A nor to Q.

The estimated parameters are given in table 3.1.

Table 3.1: Fitting results of the survival function

q b V(B VVp) Il
0.1620 0.9157 0.000781 0.000669 -170913

The results are also plotted in figure 3.10.
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Figure 3.10: Fitted survival function

As predicted, the first exponential part of the survival curve is underestim-
ated. This would lead to a simulation of too many terminations during the
first year in the portfolio, which might not be accurate. More precisely, in the
context of projecting a portfolio up to a 1-year horizon, figure 3.10 suggests that
more than 20% of policyholders who underwrite a contract terminate it within
1-year. The newer the portfolio, the higher the impact of such an error on the
number of policyholders still in the portfolio one year later. For much more ma-
ture portfolios, the share of new policyholders can be negligible compared to old
policyholders, and this impact can be neglected. We might face the following
two cases:

e If one wants to study the run-off of the portfolio, then the error on the
first exponential part can be neglected, and some simple parametric form
of the survival curve can be used.
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e If one wants to study the movements of the portfolio in a very short period,
the idea of using a semi parametric survival curve, as depicted in section
2.4.2, makes much more sense in this case.

In the semi parametric case, the choice of the threshold can be very tricky,
and can lead to severe over or underestimations. Recall that the threshold can
be determined statistically using goodness-of-fit criteria. We will however keep
the model simple by setting the threshold manually. To do so, finding a range
in which we can choose the threshold is key.

A good starting point is to choose it after the first exponential part because,
as discussed, we want to use the Kaplan-Meier estimator in this area to avoid
any bias.

A second criterion would be to choose a point at which the survival data is
not erratic. On the right side of our survival curves, one can see that data are
spreading, and that some inconsistencies and irregularities show up.

The last criterion, which is the most important one at some point, is to re-
call how the parametric curve is "glued" to the Kaplan-Meier estimator. This is
simply done by multiplying the parametric curve by a constant factor. That is,
the impact of the multiplier will be very important for S(z) close to 1, but much
less important for S(z) close to 0. For instance, choosing a threshold s = 1 year
will lead to an overestimation of the survival curve in the interval [1, 3] years.

An appropriate choice seems then to be s = 2 years, because the red curves
on figure 3.10 seem to cross the Kaplan-Meier curves approximatively "in the
middle". No over nor underestimation is expected at this point, and it enables
to use the Kaplan-Meier estimator on [0, 2], which is an interval for which the
data are quite stable and not erratic. The results of such a choice are depicted
in figure 3.11, for s = 680 days. The red curve shows the extension of the
Kaplan-Meier estimator, which is in black.

If more precision is required, it is of course possible to determine the threshold
statistically, using the method proposed in [GTP13].

3.3 Fitting the arrival process

Sections 1.1.1 enabled to introduce three general ways of modeling the arrival
process:

e one based on homogeneous Poisson processes,

e one based on inhomogeneous Poisson processes,

e one based on Poisson-Gamma Cox process.

While section 1.2 showed that the output process and the number of indi-

viduals in service were defined in a closed-form for the homogeneous and the
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Figure 3.11: Semiparametric estimator of the survival function

non-homogeneous case, it has not been possible to generalize the result for the
Poisson-Gamma Cox process. Hence, no closed-form distribution can be applied
to backtest the model in the case of overdispersed data. However, the mean and
standard deviation can be easily computed for the arrival process.

This section will present the methodology retained for fitting all different
kinds of arrival processes, and discuss on the results.

3.3.1 Fitting the homogeneous Poisson process

Intensity function estimation A good starting point of the study would
be to keep it simple, by fitting the simple homogeneous Poisson process, and
to apply the simple M/G /oo queue described in section 1.2.2.2. This setting
shows the advantage of having a simple distribution for the output process and
the number of individuals in service, which are Poisson.

Such assumptions can be simply verified. Recall that the log-likelihood in
the Poisson case for the arrival process writes:

n

In (£ (kh sk, p)) = Z [—A(fifl, ti) + k; In (A(tifl, tz)) —In kz']

i=1

Let A > 0 be the intensity parameter for the arrival process. Then one can
write:

A(tio1,t;) = AM(ti — ti—1)
Hence, the log-likelihood writes:
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In (£ (k‘1, ek, /\)) = -\t + zn: [k;z In ()\(tl — ti—l)) —1In k‘ll]

Writing the derivative with respect to A, one gets:

d(=In (£ (k1,- - ks A))) :t—%ik

K2

dA
Thus,

1 n
= — ; 3.1
A t;k (3.3.1)

This result can be simply interpreted as the mean number of arrivals per
day. Hence, no seasonality nor trend will arise from such a model.

Parameter estimation The results are depicted in table 3.2.

Table 3.2: Fitting results of the homogeneous Poisson Process

A JV()  AIC BIC Ini
1477823 0.3180432 108,792.5 108,797.8 —54,305.24

Simulations A simple algorithm can be found in [Mcql0] to simulate a ho-
mogeneous Poisson process. The real number of underwritten contracts can
be found on figure 3.12, while the simulated number of contracts can be found
in 3.13. The red line on each barplot represents the expected number of un-
derwritten contracts per day, which is constant in the homogeneous case. One
clearly sees that the homogeneous Poisson process doesn’t fit the real number
of contracts per day. This was expected given the seasonality observed in the
underwriting scheme. Moreover, one can see that the overdispersion is not cap-
tured in the simulation, which was predictable since the variance equals the
mean in the homogeneous Poisson case. Even though homogenous Poisson pro-
cess represents a good first approach for modeling queuing system, it fails when
data show overdispersion or non-stationarity.

The expected number of contracts in a homogeneous Poisson process between
0 and ¢ satisfies E[N] = At, that is, a linear function of time. Figure 3.14 plots
the cumulated number of contracts with respect to time.

One sees that the black line doesn’t fit with the theoretical red line, which
confirms the intuition of non-homogeneity.

The following subsection will deal with the non-homogeneous case. Con-
sidering the above discussion, we expect the result to properly capture the ex-
pectation, that is non-stationarity, while we expect the overdispersion not to be
captured by the model.
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Figure 3.12: Observed number of underwritten contracts per day
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Figure 3.13: Sample realization of the number of underwritten contracts per
day, with a homogeneous Poisson process

3.3.2 Fitting the non-homogeneous Poisson process

The previous subsection has shown that the most simple approach for modeling
the number of contracts fails in expected value. The studied data show non-
stationarity that violates the main underlying results of a homogeneous Poisson
process.
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Figure 3.14: Cumulated number of contracts with respect to time

A good alternative to overcome the stationarity problem is to work with
non-homogeneous Poisson process, whose intensity function enables to capture
the variations in the expected path.

The key point of a non-homogeneous Poisson process is to specify the in-
tensity function. A convenient choice will prevent over-fitting. Going back to
figures 3.1 and 3.4, one can see the following patterns:

e Peak activity is recorded during the first day of each month. Intuitively,
this is due to people wanting to start their contracts on the first day of
the month.

e This peak activity is lower in May and November.

e Flat activity is recorded each day of the week, except on Saturdays and
Sundays.

Intensity function estimation Taking into account those considerations, a
natural intensity function can be cut in two distinct intensity functions, that
are defined depending on the day of the month.

a if weekday of x is not Saturday nor Sunday
A1(z) =< b if weekday of x is Saturday (3.3.2)
¢ if weekday of x is Sunday

Do) = {A if month of z is not May nor November (3.3.3)

B if month of x is May or November
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Then the final intensity function is:

Az) = {)\1(:5) if z is not the first of the month (3.3.4)

Ao(x) if  is the first of the month

This intensity function is a piecewise constant intensity function, which is
very suitable for non-homogeneous Poisson process modeling. It enables to get
closed form formulas for the parameters.

Our data set is observed at the end of each day. Each record corresponds
to the number of underwritten contracts at the end of each day. Hence, in the
likelihood formula in section 2.2, the term ‘fttj—l A(t)dt = A(t;—1,t;) integrates
the intensity function for a specific day. That is, t,_1 € N and t; € N, and
t; = t;—1 + 1. In a more general setting, let {; € Ry and ¢;_; € Ry so that
lti1] +1=[t;].

In this case, this integral can be re-written in a closed- form First, let’s com-
pute the cumulated intensity function A(¢;—1,t ft t)dt. It is straight-
forward to say that, depending on the condltlon 1ntroduced Wlth the definition
of the intensity function, one gets:

a(t; —ti—1)
b(t; —ti—1)
A(tifl,ti) = C(tl —tL 1) (335)
Aty —tii1)
Blti —t;_1)

Let p = (a,b,c, A, B). The log-likelihood writes:

n

n(L (ko ko, p) = D [A(io1, ) + ki In (A(tio1, 1)) — In k]

i=1

Let C, be the set of index ¢ € {1,---n} so that ¢;_; is not the first day
of the month and is not during the weekend. Similarly, define Cp, C., C4 and
Cp according to the definition of A(x) in equation 3.3.4. Then the likelihood
rewrites, for a particular set:

M-

n (E (k1, cee ,kn,p)) = [—a(ti - tifl) + k; In (a(ti — tifl)) —In kl']

1

a

P
1€

aQ

For the other sets, one simply needs to replace the set C, in the summation
symbol, and the variable a in the term of the sum.
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For optimization purposes, one needs to compute the derivative of the log-
likelihood with respect of each parameter. It is equivalent to compute the de-
rivative of A(t;—1,t;) and In A(¢;-1,¢;)

Let p; € p. One gets:

OA(ti—1,t:
O(InA(tia,ti) G
Op; A(ti—1,ts)
For a particular set, say C,, then one gets:
0
- t; —ti_ =t; —t;_
o (alty — ti 1)) 1

and:

0 1
% (lna(ti - ti—l)) = g

In the general form, we get

Vp(_ In ('C (kla to 7knap)))

[ ) Tl

S At

For a particular set, say C,, we obtain:

Vol (L (e ) = 3 |6 = 1) - 2
i,

As stated initially, the advantage of working with a piecewise constant in-
tensity function is to have closed form formula for the parameters. By equating
the above equation to 0, we can obtain the formulas for all the parameters:

B ti —ti—1



The standard error of those estimators writes (example given for a):

a
#Ca

#C, denotes the cardinal of C,, that is the number of elements in this set.

s¢ =/ V(a) =

Parameters estimation The results of the parameters estimations are de-
picted in table 3.3. One can see that both AIC and BIC are much lower than
in the homogeneous case (see table 3.2).

Table 3.3: Fitting results of the non-homogeneous Poisson process

a b é A B
160.60714  83.14778  26.78218  703.95  446.375
VV(a) V(b) V(@) \VV(A)  \/V(B)
0.3991647 0.8894764  0.8916753  2.00379  4.4806

AIC BIC Ini
23,048.16  23,974.59 —11,969.08

Simulations The real number of underwritten contracts is depicted in figure
3.15, the simulated number of underwritten contracts is depicted in figure 3.16,
and the expected number of underwritten contracts is depicted in figure 3.17.
One can see the significative improvement in forecasting the expected number
of underwritten contracts per month. The introduction of a varying intensity
function for the non-homogeneous Poisson process enables to capture the non-
stationarity of our data.

Boucher and Couture-Piché introduced the possibility to take into account
non-stationarity in his model, see [BCP16]. They however restrained to consid-
ering homogeneous Poisson processes for simplicity purposes. Hence, the first
main result of this thesis is the generalization of the work proposed by Boucher
and Couture-Piché. That is, it is possible to better estimate the expected num-
ber of contracts in the portfolio using a non-homogeneous Poisson arrival pro-
cess. Moreover, section 1.2.2.3 showed that a generalization of the result from
Mirasol [Mir63] was possible with a non-homogeneous Poisson arrival process.
Thus, one who is interested in forecasting the mean number of contracts in a
portfolio and other expected quantities can perfectly use this model to make
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Figure 3.15: Observed number of underwritten contracts per day
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Figure 3.16: Sample realization of the number of underwritten contracts per
day, with a non-homogeneous Poisson process

forecasts.

However, overdispersion is still not captured. This thesis focuses on estimat-
ing the variability of the premiums. Hence, each component of the model must
perfectly fit the variance. In this case, the non-homogeneous Poisson process
appears not to be well-fitted for this purpose. The following section will depict
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Figure 3.17: Expected number of underwritten contracts per day, with a non-
homogeneous Poisson process

the result when using a Cox process for the arrival process. We will lose the
generality of the main result proposed in section 1.2.2.2 and 1.2.2.3.

3.3.3 Fitting the Poisson-Gamma Cox process

Overdispersion As discussed earlier, count data usually shows overdisper-
sion. That is, the variance of the process exceeds the mean. A simple calcula-
tion of overdispersion can be applied to evidence this behavior in our dataset.
Indeed, a simple estimator of the mean and of the standard deviation can be to
apply a rolling window, and to calculate both the mean and standard deviation.
Then, one can plot the output of the former and the output of the latter. In
case no overdispersion arises, the rolling window of the mean should melt with
the rolling window of the variance. Indeed, no overdispersion is translated by
E(X) = V(X). This methodology has been applied with a rolling window of
100 days, that is, a 3-month rolling window. Results are depicted in figure 3.18.

The green line is the rolling standard deviation, that is, the square root of
the variance. Since the green line is juste below the red line, with values around
100, the variance should equal approximatively 10,000, which is much higher
than the mean. Overdispersion is present in our dataset.

This kind of behavior has been well pointed out by actuaries, especially on
the claim side. For instance, [Liul2] applied a Cox process with shot noise
intensity for modeling claim count. Indeed, the shot noise process enables to
increase the intensity of claim occurrence when a specific event occurs, and to
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Figure 3.18: Evidence of overdispersion

decrease it exponentially with time. This enables first to better represent reality,
since a claim is more likely to be reported to the insurer right after the event,
rather than later with time, and secondly to take into account overdispersion,
which is a known observation for claim data.

In our case, the shot noise process could be an appropriate way for modeling
the arrival process. One could think about special sales or discounts proposed
by the insurer which would lead to an increase of the underwritten policies, and
which would decrease with time since the discount may have a fixed deadline or
simply because advertising is not done anymore for the offer.

However, a strategy would be to make offers regularly in such a way that
policyholders would underwrite their contract as regularly as possible, in order
to overcome the decrease caused by the shot noise process. That is, an insurer
would try to have an underwriting rate as stable as possible. Thus, the shot
noise process wouldn’t be the best solution to fit the arrival process in the port-
folio.

One solution is to adapt the methodology proposed on the claim side by
[AAABI19] to our portfolio modeling. Instead of using a shot noise process, the
use of a Gamma process seems appropriate. Indeed, it enables first to write
the probability of increments with a closed-form formula, that is, a negative
binomial distribution (see proposition 1.1.11), and then to model the shape
of the arrival process with a specified shape function for the Gamma process.
This kind of flexibility is quite suitable for our modeling purposes, since specific
patterns can be observed from our data (see section 3.1).
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Shape function Hence, let’s use for the shape function, the intensity function
introduced in section 3.3.2, that is:

alt) = {Al(t) if ¢ is not the first of the month (336)

Ao(t) if t is the first of the month

Recall that the log-likelihood in the Poisson-Gamma Cox case writes:

ln (Lt (kla e 7kn7p75))

= z": <ln <F (ki + /ti ap(t)dt>> —1In (F </t ap(t)dt>> - 1n(ki!)>

+ i <kzi In(s) — k;In(s+ 1) —In(s+ 1) /ti ap(t)dt>
i=1

ti—1

Also recall that the integral of ap(t) has been calculated in equations 3.3.5.
For optimization purposes, one could be interested in the gradient of the log-
likelihood function. Let p = (a,b, ¢, A, B). First, one gets:

1 1\ « 1 & [h
vs(*ln(ﬁ(kla"' ,kn,p,S)))— (8+1 S)ZkiJrS—i-l;/tilap(t)dt

i=1

Since the gradient of the integral of ap(t) is known thanks to section 3.3.2, one
gets:

vP (7 In (E (kla e 7kn7pvb)))

([ o) (o[ ) 0 [ )

+1In(s + 1)ivp (/t ap(t)dt>

Where ¢(z) is called the digamma function, and is defined by:

_ I'(z)  OlnI(x)
W) = L(z)  Ox

In our dataset, it seems that the variance of the number of underwritten
contracts on the first day of a month (denoted as N7) is higher than the number
of contracts not underwritten the first day of the month (denoted as N»). Those
two figures are shown in the table 3.4.

That is, the variance is not constant over time, and should then be a function
of the time. Such complexification can be taken into account in the model us-
ing Extended Gamma Processes (EGP), see [Merl7a] and [AMMV17]. In such
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Table 3.4: Evidence of the overdispersion

VYD) V)
150.2979 61.44649

processes, the parameter s is becoming a function of time, that is, s — s(t).

However, to avoid a too complex model, and to be able to rely on simple
results depicted in the previous sections, the model will be constructed as fol-
lows. Two arrival processes will be defined: one for the people underwriting
their contracts the first day of a month, and one for the others. The shape
function of the former will be Ay(t), while the shape function for the latter will
be A1 (t). We will then define two scale parameters, s; and so. The likelihood
remains valid.

Parameters estimation The results of the parameters estimation are depic-
ted in table 3.5 and 3.6.

Table 3.5: Fitting results of the Cox process

a b ¢ S1
16.423002 8.731752 3.062359 9.721608
VV(a) \V V(b) V(@) V(1)
0.7086330 0.4171282 0.1647168 0.4222872

AIC BIC Iniy
14,019.75  14,040.89 —7,005.873

Table 3.6: Fitting results of the Cox process

A B SAQ
37.45386 24.11130 18.76296
VB VO V)
8.051101 5.399656  4.053392

AIC BIC Inly
595.6961 611.5568 -294.8481
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Simulation The results of the above derivation are depicted in figures 3.19,
3.20 and 3.21. In this case, both mean and variance seems to be well-fitted.
Overdispersion is well taken into account. The other interesting fact is that the
expected value process is exactly the same as the one for the non-homogeneous
Poisson process.
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Figure 3.19: Observed number of underwritten contracts per day

Again, AIC and BIC are much lower than the non-homogeneous Poisson
case. This improvement shows that the Cox process is suitable to model the
overdispersion of underwriting data. The simplicity of the homogeneous Pois-
son process enables to get a first approximation of the number of contracts in
the portfolio, with some bias as peak activity is not captured. The expected
value is, in itself, biased. If some raw indications on the number of contracts
are required, then the homogeneous Poisson process could be suitable, to avoid
too complex computations.

If one wants to overcome the bias issue, a simple turnaround is then to work
with non-homogeneous Poisson processes. Indeed, AIC and BIC are approx-
imatively five times lower than the homogenous Poisson, meaning a significant
improvement in the model. The framework is still simple if one works with
piecewise constant intensity functions, as one benefits from the same closed-form
formulas for parameter estimations. If one is interested in a better estimation of
the expected number of contracts, then this is an appropriate choice. However,
no second order measure needs to be derived from this approach.

In this case, it is much better to use the Cox process, that has shown that
both the fit is better, but also it enables to properly capture the overdispersion.
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Figure 3.20: Sample realization of the number of underwritten contracts per
day, with a Cox process
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Figure 3.21: Expected number of underwritten contracts per day, with a Cox
Process

The expected value is the exact same as the non-homogeneous case, which offers
a comprehensive way to model both the expected value and the overdispersion.
On the other hand, the simulation algorithm is less efficient, and no closed
formula can be derived as stated in section 1.2.2.4.
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3.3.4 Comparisons with closed formulas from the queuing
theory

Sections 3.3.1, 3.3.2 and 3.3.3 enabled to fit all three types of arrival processes.
The expected value of the number of underwritten contracts is fully determ-
ined in those three frameworks. However, sections 1.2.2.2 and 1.2.2.3 showed
that closed formulas were also available for both the homogeneous and the non-
homogeneous Poisson cases, but not for the Cox case.

The purpose of this section is to compute those formulas, and to compare
them with our simulated data. The calculations will be made for the non-
homogeneous case only, as the homogeneous Poisson process is a particular case
(A() = A).

Recall from proposition 1.2.4 that the number of contracts in the portfolio
at time ¢t + T is Poisson-distributed with mean

ni(t,T) = s(t,T) (At +T) = A() + q(t, IA(®)

and that the number of terminated contracts between time ¢t and ¢+7 is Poisson-
distributed with mean

po(t, T) = r(t,T) (A(t +T) — A(t)) + p(t, T)A(t)
with p(¢,T), q(t,T), r(t,T) and s(t,T) as defined in proposition 1.2.3. Then,

one gets:

T
s(t,T) (A(t+T) — A(t)) = /0 At+T —2)(1 - H(z))dz

a(t, T)A(%) :/0 At —2)(1 — H(T + 2))dz

= /T+t At +T —u)(1 — H(u))du

Hence, one gets:

pi(t,T) = s(@t,T) (At +T) — A(t)) + q(t, T)A(E)

T T+t
:/ )\(t+T—x)(1—H(x))dx+/ At+T—2z)(1— H(x))dx
0 T
T+t
:/ At +T —a)(1 - H(z))de
0T+t
= / At +T —z)S(z)dx
0

The mean number of contracts in the portfolio at time ¢+ 7" only depends on
t+T. Moreover, t+ T enters in the formula both at the top of the integral, but
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also in the intensity function. That is, the knowledge of the number of contracts
in the portfolio at any time ¢; doesn’t imply the knowledge of the number of
contracts in the portfolio at any time ¢5 > t;: one needs to compute the integral
from ¢ = 0. Thus the difference between the number of contracts at time tq
and at time ¢; must be calculated with u;(0,¢2) — p;(0,¢1), and not with some
integral with bounds going from ¢; to t5. The only particular case where using
an integral from ¢ to to is justified, is for the homogeneous Poisson case, as one
gets:

ta
100, 2) — (0, 41) = A / S(z)dz
ty

Some similar results can be obtained for the number of terminated contracts
between ¢t and ¢t + T

T
r(t, T)(At+T)—At) = /0 At+T —z)H(x)dx

p(t, T)A(t) = ; At —2)(H(T +z) — H(x))dx

T+t t
= / At+T —u)H(u)du — / At —z)H(x)dx
T 0

Hence, one gets:

po(t, T) = r(t, T) (At +T) = A(t)) + p(L, T)A(2)

T4t t
:/ Mt +T — 2)H(x)da —/ At — o) H(z)dz
0 0

T+t ¢
:/ At+T —z)(1 fS(x))dmf/ At —2)(1—S(x))dx

0 0

T+t t
= /0 )\(t—l—T—x)dx—/O At — x)dx
T+t t
- (/ /\(t—i—T—ac)S(at)dx—/ A(t—x)S(m)dm)
0 0

This result is very intuitive. The first two integrals (with A(-) only) denote
the expected number of underwritten contracts between time t and time ¢ + 7.
The other two sets of integrals can be rewritten as p;(t,T) — u;(0,t), that is,
the difference between the number of contracts in the portfolio at time ¢ + T
and the number of contracts in the portfolio at time ¢. Since, intuitively, the
expected number of terminations is the difference between the expected number
of arrivals minus the expected exposure, the integral makes sense.

Let’s now compute the integral u;(¢,T). This integral involves the two func-
tions A and S. Recall from equations 3.3.2, 3.3.3 and 3.3.4 that the intensity
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function is defined on a per-day basis. Indeed, its value may change depending
on the day of the month considered. On the other hand, the survival function
is defined on a per-year basis: the breaks occur every year (see equation 3.1.1).
For the integral to be computed consistently, both functions need to be defined
on the same basis. One way is to transform S as:

z+d—1

S(l’) — ¢ V3% 25meJ

where d denotes the underwriting day to account for the shift discussed in sec-
tion 3.2.3. The division by 365.25 will introduce a little biais, but it is negligible.
Recall also that the survival function has been defined in a semi-parametric way.
We will not take this specificity into account to illustrate the closed formulas, as
the integral, even if fully computable, would lead to long formulas. The purpose
of this section is to illustrate the results of the queuing theory in a simple way.
We will write k = 365.25.

Recall also that the intensity function being piecewise constant, there exists
some intervals [t;,t;11[ under which A(¢) = \; for t € [t;,¢;41[. That is, only
the integral of the survival function needs to be calculated in p;(¢,T), as by
cutting the integral using Chasles’ segment addition postulate, \; will go out of
the integral on the appropriate segment.

The integral of the survival function writes:

b b
/S(m)dx:/ e*"WpL i)

b+d 1

BA((i+1) x k) ,
= / e Vidx
a+d 1 aV(ixk)

_ Z P x k (ef%(a\/(ixk) 767%(bv((i+1)><k))

Then pu;(t,T) writes:

wi(t, T) = /OTH At+T —x)S(x)dx

T+t—1 n+1
S )\(t—i—T—l—n)/ S(z)dz
n=0 n
T4t—1 | ] i
_ Z At+T—1-n) Z s <e—%(nv(i><k) _ e—%((n+1)v((i+1)xk))
n=0 i=|-n+;l71J g
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For the number of terminations p,(t, T), the calculation is straightforward,
as it involves the expected number of underwritten contracts which has been
computed in equation 3.3.5, and pu;, which has just been computed above.

Figure 3.22 shows the simulated and expected number of contracts in the
portfolio per day, and figure 3.23 shows the simulated and expected number of
terminated contracts per day. One can see that the behavior is perfectly cap-
tured wvia the closed formulas. Hence, the queuing framework is very suitable
for the homogeneous and inhomogeneous Poisson cases, as all interesting quant-
ities are directly available through closed formulas. If only expected values are
desired, but not overdispersion, the non-homogeneous Poisson framework will
be of high interest.

—— Simulated NHPP —— Expected NHPP

80000
I
80000
|

60000
I
60000
|

40000
I

Number of contracts
40000
|

Number of contracts

20000
I
20000
|

T T T T T T
2018 2019 2020 2018 2019 2020
Date Date

Figure 3.22: Simulated and expected number of contracts in the portfolio per
day
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Figure 3.23: Simulated and expected number of terminated contracts per day
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Chapter 4

Models comparison and
performance

The main development of this thesis was to extend the framework proposed by
[BCP16], by proposing an alternative to the homogeneous Poisson process for
the arrival process, and a fully parametric survival curve for the service time.
All models, going from the simple M /G /oo queue to the doubly-stochastic Pois-
son process queue, were discussed in the first section.

The objective of this new part is to compare the performance of the differ-
ent models, both in terms of expected premium and premium deviation. It has
already been shown that the homogeneous Poisson process introduces a bias
in the expected number of contracts, but that both non-homogeneous and Cox
processes lead to the same expected number of contracts. The next step is to
determine how much this impacts the potential bias on the premium.

However, in the context of Solvency II, a measure of the Best Estimate,
that is, of an expected value, is not sufficient enough to master the risk of an
insurer. The regulator is more interested about the tails of the distributions of
the risks that an insurer faces. In this context, the use of a doubly stochastic
Poisson process makes much more sense, and we will try to conclude on its
performance to properly measure the deviation of the overall insurance premium
in the portfolio.

4.1 Modeling the premium

4.1.1 Background on the premium

Premium corresponds to the amount of money that the insurer is ready to ac-
cept from the policyholder to undertake its risk. That is, the premium can
be understood as a function of insured’s risk. Similarly, insured’s risk depends
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on its characteristics, may they be personal or property, or its past claim history.

Thus, those characteristics are not constant over time, since for instance the
age of the policyholder may evolve, or because the policyholder reported some
claims. It means that all those characteristics can be modeled as time processes,
so is the premium.

Moreover, insurers also capture costs and environmental aspects in their pri-
cing, such as inflation, that is also not constant over time. Finally, low-claim
bonuses may also be applied in order to reward good risks in the portfolio, and
similarly, bad risks may be penalized. This is for instance the case in the French
bonus-malus scale for motor insurance, where good drivers are rewarded with
a 5% decrease of their CRM (Coeflicient Reduction Majoration) if they didn’t
face any responsible accident during the year, or be penalized by an increase
of 25% of their CRM if they are responsible for a claim during the year. The
impact on the premium may be very significant.

Hence, it is unlikely that a policyholder that stayed in the portfolio more
than one year sees his premium constant over time. Optimizing the term of
contracts is an actuarial field in itself, that requires a proper modeling. Taking
such specificities into account in our model would lead to something way too
complex, and would not be suitable. Thus, for simplicity purposes, and despite
what has just been said, we will assume that the premium is constant over
time for one insured. Mathematically speaking, if (X})¢~o denotes the premium
process for policyholder 4, then X} — X*

4.1.2 The collective model

The premium of an insurance contract is usually determined through the use of
complex models, and is the subject of many actuarial papers or master thesis. In
the P&C industry, Generalized Linear Models are often used, and are a stand-
ard in the market. See for instance [GKTG16| and [DJHT08].

While insurance pricing’s objective is to set the most accurate price for a
given risk or individual, this is not our focus here. Indeed, to look at our port-
folio in an aggregate way, we don’t need to know what is the exact premium
of a particular contract, but more how the overall portfolio’s premium behaves.
Hence, as long as the overall distribution of premium is accurate in our portfolio,
we don’t give much care to know if the premium we set for an individual was
the accurate one.

In this context, the quantity of interest for the premium is not the indi-
vidual premium (X;)1<;<y for each policyholder in the portfolio, but rather the
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aggregate premium of the portfolio defined by:

N
S=> "X,
i=1

We retrieve the framework of the classical collective model. The collective
model is one of the well-known models for overall claim assessment, or to set a
price to an insurance contract. Its idea is quite straightforward:

Claim assessment If S denotes the overall claim amount for a given year, N
the overall number of claims during this given year, and (X;)1<i<n the

individual amount of each of the N claims, then we get S = Zivzl X;

Pricing If S denotes the overall claim amount for a given policyholder in one
year, N the number of claims faced by the policyholder in one year, and
(Xi)i<i<n the individual amount of each of its N claims, then we get

S = Zfil X;. The pure premium is defined by E(S).

For an introduction to the collective risk model, see [Purl3].

The purpose of this section is not to apply stricto sensu the theoretical res-
ults of the collective model, as this would not be suitable, but rather to show
the extension possibilities of the overall model developed here, depending on its
use. For instance, for customer lifetime value purposes, one could be interested
in the behavior of a specific group of individuals. In this case, the premium
associated to each individual must be accurate, and could require the use of the
collective model to integrate the pricing methodology to Xj;.

In our case, the random variable N, which in fact is a process, N (t), has been
modeled in the first section. We make the choice here to use a simple distribu-
tion for X;, which will be the same for all policyholders. We keep the standard
assumptions of the standard collective model that the X; are independent and
identically distributed, and that they are also independent of N(t). This very
last assumption will be discussed in section 5.

4.1.3 Model for the individual premium

The insurance portfolio we work on comprises multiple types of policyholders,
that differ according to their characteristics. That is, their premium are not
comparable per se. One could assume that the data could be modeled using
some parametric distributions. Let’s first take a look at the distribution of
premium on figure 4.1.

The distribution shows one main mode that is slightly skewed to the right.

Two classical parametric candidates could fit the data: the gamma distribu-
tion and the log-normal distribution. The log-normal is often used to model
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Figure 4.1: Empirical distribution of the premium

intensity for attritional claims. Since premium and claims are usually linked by
the expected value, the log-normal may also be a good candidate for individual
premium modeling.

Table 4.1 depicts the results of the fit for the log-normal distribution, where
i and o are the mean-log and sd-log parameters, and table 4.2 depicts the
results of the fit for the gamma distribution, where « and 3 are the shape and
rate parameters.

Table 4.1: Fitting results of the log-normal distribution

i G VV(i) V(o) AIC BIC InL
5.0411 0.2341 0.00054 0.00038 1883071 1883091 -941533.3
Table 4.2: Fitting results of the gamma distribution
é B NATOBERVALC)) AIC BIC InL
17.7496 0.1115 0.05725 0.000364 1891701 1891721 -945848.6

When it comes to AIC, the log-normal distribution seems to fit better the
data. However, looking at figure 4.2, it seems that the right tail of the distribu-
tion is underestimated. The QQ-plot deviates from the straight line around the
value 250, which corresponds to the quantile at 97%. The deviation appears to
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be quite significative, since some premium might be underestimated by 33%.

One should carefully use this parametric estimate when modeling the premium
distribution, as it is known that extremes could lead to significant deviations
if they are underestimated. This advantage of working with individual data
is that individual premium is available. For such massive portfolios, it can be
assumed that most of the distribution is represented in the portfolio, and that
a good alternative would be to sample directly from the empirical distribution.

Empirical and theoretical dens, Q-Q plot
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Figure 4.2: Fit of the log-normal distribution

In order to work with a fully parametric model, we will retain the log-
normality assumption. However, one needs to carefully verify the hypotheses
while using this model.

4.2 Performance comparison

4.2.1 Simulation and metrics
All the elements of the model are now modeled:

e The number of contracts through the process N(t) which will be either
homogeneous Poisson, non-homogeneous Poisson, or doubly stochastic

e The individual premium, which will be modeled through a log-normal
distribution

The purpose of this section is to examine the distribution of the random
. N
variable S =>"." | X;.
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Let t = ¢y be the starting point of our study. Let Ny = N(tp) be the initial
number of policyholders in the portfolio. This number is deterministic. We will
also assume that for all Ny initial policyholders, we know their records in the
portfolio, that is, we know for how long they have been in the portfolio, and we
know their constant premium (X;)i1<;<n,. That is, there is no left-censoring.
This hypothesis is realistic, otherwise it would mean that the insurer would have
lost the track of its policyholders. Hence, let (s;)1<i<n, be the current survival
time of those Ny policyholders.

The residual survival time can be defined by S;,(t) = P(T > ¢ | T > to),
with t > ty. Standard survival analysis computation leads to:

P(T > t,T > ty)

P(T > to)

_ P(T >1)

— P(T > t)
S(t)
S(to)

Simulating the residual lifetime for a policyholder then requires to compute
S(tg) for each of the Ny initial policyholders. Then, one needs to restrict S(t)
to [to, +oo[, and to scale it with S(#p). Sampling directly from the residual
survival distribution using the algorithm depicted in section 3.2.2 would require
to compute, for each tg, the new breaks of the residual survival function, which
will be computationally not efficient. A very simple turnaround is to recall that
the inverse transform method consists in finding ¢ so that

S(t)
S(to)

P(T>t|T>t)=

for some u uniformly distributed on [0, 1]. This is equivalent to find some ¢ so
that:
u=_5(t)

for w uniformly distributed on [0, S(¢p)]. In this configuration, one simply needs
to apply algorithm of section 3.2.2, where u will be drawn from a uniform dis-
tribution on [0, S(o)]-

Then, one needs to simulate the arrival of new policyholders with the choice
of the arrival process. All three homogeneous Poisson, non-homogeneous Pois-
son and Cox processes will be tested and compared. The next step is to simulate
the survival for each of those newcomers, using the algorithm depicted in 3.2.2.
The last step of the simulation is to simulate their individual premium, by
sampling from the fitted log-normal distribution in section 4.1.3.

In order to get some statistics about the desired distribution, this simulation
will be performed N times (to be defined), using Monte-Carlo techniques.
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Two types of distributions will be considered:

e The number of contracts at the end of a given period
e The total premium collected during a given period
The following metrics will be of particular interest:

Mean : The sample mean should be close to each other since all arrival pro-
cesses should lead to the same expected number of underwritten contracts.

Standard deviation : The sample standard deviation will be described by a
path for the number of contracts simulation, while it will be a number for
the total premium collected.

Confidence interval at 5% : This will be characterized by the sample quantiles
at 97.5% and 2.5%. Again, it will be a path for the number of contracts
simulation, while it will be numbers for the total premium collected.

We set the simulation period between 01/01/2019 and 31/12,/2019.

4.2.2 Results

The results of the simulations for the number of contracts are depicted in figures
4.3, 4.4 and 4.5. The results of the simulations for the total premium collected
are depicted in figures 4.6, 4.7 and 4.8. On each chart, the red line corresponds
to the mean, and the green lines corresponds to the quantiles at 97.5% and
2.5%. 1,000 simulations have been performed.
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Figure 4.3: 1,000 sample paths of the number of contracts with a HPP
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Figure 4.4: 1,000 sample paths of the number of contracts with a NHPP
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Figure 4.5: 1,000 sample paths of the number of contracts with a Cox Process

It is worth commenting first the aspect of the number of contracts curve.
First, one can see steps the first day of each month. This is due to the can-
cellation of initial policyholders at their anniversary date. Moreover, we can
see that there is a general increasing tendency. It means that the number of
underwritten contracts exceeds the number of cancelled contracts.

Concerning the homogeneous Poisson process, the number of contracts evolves
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nearly linearly between each first day of each month. This linearity is due to the
arrival process (recall that the expected number of underwritten contracts is lin-
ear with t). The steps are nearly compensated on figure 4.4, which corresponds
to the non-homogeneous Poisson process. This is due to the fact that the intens-
ity function captures the higher number of underwritten contracts the first day
of each month, which compensates the cancellation from initial policyholders on
the first day of each month. The same applies for the Cox process case on figure
4.5. However, one can clearly see that the dispersion of the simulation curves
behaves the same in the homogeneous Poisson and inhomogeneous Poisson, but
that the spread is much higher in the Cox case. This highlights the fact that
the Cox process enables to better capture overdispersion. One important fact
is that overdispersion increases with time. That is, uncertainty increases with
time. If, for strategic purposes, one needs to increase the projection time frame,
then one would need to prefer the Cox process for arrival for risk assessment.
One will need to rely on simulation-based estimates as closed-form formulas do
not exist for the Cox case. On the other hand, if the quantity of interest is the
average expected number, then two cases arise:

e If one projects at the end of one month, then one can simply use the
homogeneous Poisson case.

e If one projects at some random time, then one has to use the inhomogen-
eous Poisson case. Indeed, using the homogeneous Poisson arrival would
introduce a bias due to the increased steps at the beginning of each month.

In both cases, the advantage is that one can use closed-form formulas to avoid
simulation-based estimates.

All histograms of figures 4.6, 4.7 and 4.8 are constructed with the same x
and y axes, and the exact same bins width for matters of comparability.

Those histograms show similarities. First, they all contain one main mode.
However, the values of the distributions seem to be concentrated around the
main mode for the inhomogeneous Poisson process, while they seem more "nor-
mally" spread for the homogeneous Poisson and Cox processes. Indeed, looking
at the kurtosis gives:

e k= —0.07321263 for the homogeneous Poisson case

e k= —0.2264731 for the inhomogeneous Poisson case

o 1 = 0.04289296 for the Cox case

However, the tail is a bit larger in the inhomogeneous Poisson case com-
pared to the homogeneous Poisson case. The significant difference lies in the
Cox case, where the main mode is nearly flat, and the tails are thicker. This
can be understood by the fact that in the homogeneous and inhomogeneous
Poisson cases, the variance of the number of contracts doesn’t contribute much
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Figure 4.6: Distribution of the total premium collected with a HPP
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Figure 4.7: Distribution of the total premium collected with a NHPP

to the total premium collected variance. This is the opposite in the Cox case,
where the variance of the number of contracts has a real influence on the total

premium collected distribution.

Table 4.3 shows the mean, standard deviation, and quantiles at 2.5% and

97.5% for all three different arrival processes.

All means are comparable, which is coherent as the mean of the individual
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Figure 4.8: Distribution of the total premium collected with a Cox Process

Table 4.3: Total premium collected metrics

Arrival Mean Standard deviation q2.5% Q97.5%
HPP 29,143,773 68,201.03 29,005,007 29,274,393

NHPP 29,127,959 69,153.42 28,998,356 29,258,911
Cox 29,128,120 201,569.8 28,714,173 29,523,873

premium and of the number of contracts are the same in all three models. The
standard deviation and quantiles are really comparable between the homogen-
eous Poisson case and the inhomogeneous Poisson case. It means that making
the model more complex using a non-homogeneous Poisson process doesn’t im-
prove the results in terms of variance of the total premium collected. However,
this is not true for the Cox case, where the standard deviation and quantiles
are much higher than the homogeneous and inhomogeneous Poisson cases. The
tails are much thicker, and lead to more spread values. In that case, if one is
concerned about measuring the risk of deviation of the premium, the Cox arrival
process appears to be justified.

However, it is worth noting that the deviation of the premium is limited,
in the sense that, even in the Cox case, the difference between the quantiles
at 97.5% and 2.5%, and the mean is roughly 400,000, which is & 1.37% of the
mean. Thus, the deviation is very limited. Of course, this is approximatively
3 times higher than the deviation measured for the homogeneous and inhomo-
geneous Poisson case, but still very limited. The use of such a model is thus
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questionable, and will be discussed in section 5.
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Chapter 5

Discussion and conclusion

The results of the model show significant differences in terms of dispersion.
While the homogeneous and inhomogeneous Poisson processes show low dis-
persion, the Cox process has shown that it better captures the movement of
policyholders in the portfolio, and that such movements have significant im-
pacts on both the number of contracts in the portfolio, and the total premium
collected. As measuring the premium deviation was the primary objective of
the model, the results are satisfying.

On the other hand, the deviation is not significant, whatever the model. This
result is questionable, since it is known that the premium of insurance portfolios
may vary more than what has been modeled here. One of the main reasons is
that the model doesn’t take into account external environment behavior, but
only the behavior of the portfolio in normal conditions. The external envir-
onment plays an important role, as this may be one of the main explanatory
factor of underwritings and terminations. External environment may take into
account legal and financial aspects. For instance, the Hamon law in France en-
ables policyholders to cancel their insurance contract without penalty as soon as
the underwriting period lasted 1 year. This encourages policyholders to always
find better contracts, and thus to cancel and underwrite contracts more often.
It also forces insurers to adapt their offers, to compensate. This adaptation
goes for instance by reducing the premium, which is one of the main, if not the
most important criteria for choosing a contract for equivalent guarantees. The
reaction of a policyholder to price variation is called price elasticity, and has not
been modeled in this thesis.

Indeed, the model simulates first a number of underwritten contracts, and
then allocates a premium to each new contract, the arrival process being in-
dependent of the individual premium random variable. This hypothesis is ex-
tremely strong, and often inaccurate, as the reasoning is usually processed in
the other way. It is because the price has varied that the the number of under-
written contracts varies.
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Taking into account those two major aspects can be possible, by defining
some new processes, say some environment process (Fy);so and premium pro-
cess (P;)¢>0. Those time processes would describe the way the environment has
evolved over time, and the way the premium has evolved over time. While the
environment process would be user-defined because the perception of environ-
mental factors depends on each insurer, the premium process could be directly
derived from the insurer records. Indeed, the insurer knows from his portfolio
how the premium has evolved over time. Even more interesting, the insurer
knows how the premium will evolve in the future, since pricing strongly relies
on strategic decisions. That premium process would thus be a predictable pro-
cess. Having modeled the environment process and premium process, one can
then adapt the intensity function of either the non-homogeneous Poisson or the
Cox process. Integrating the premium process in the intensity function would
then enable to model the elasticity, and better capture the variability.

One of the other strong hypotheses that can be highlighted is the constance
of the premium of a policyholder. This hypothesis is very questionable since
the premium usually varies yearly, either because of the occurrence or not of
a claim, and also because of external factors such as inflation. While inflation
can be captured through the environment process (E;), it is not the case of
revalorization due to the behavior of the policyholder himself. The revaloriz-
ation mechanism has not been taken into account and plays a major role in
the number of contracts behavior. For instance, a policyholder with frequent
claims may be forced to cancel his policy, or may quit by himself if his premium
increase would be too high. That is, the reason of the cancellation has not been
used in the model, and plays a major role. Integrating this aspect in the model
would require to model, say, the claims process (both in terms of frequency
and intensity), and to take into account the decision process of the insurer to
cancel a policy. This would make the model much more complex, and would
integrate some "expert judgements", that are usually avoided when possible.
Such a hypothesis appears questionable, but seems necessary to avoid an over-
parametrization of the model.

In terms of applicability, this model requires the availability of individual
data that are, for each policyholder, the underwriting date, the termination
date (if applicable) and the individual premium. Normally, those data are eas-
ily available for an insurer. That is, the advantage of the model is that it relies
on really basic information, A second advantage is that a very few years of
data is necessary. While most models that work on an aggregate basis require
many historic data, this is not the case here. Indeed, we could benefit from as
many observations as the number of policyholders during our 4-year estimating
period. Working with yearly or monthly data would have made us work with 4
or 48 points, which would have led to a high estimation bias.

On the other hand, working with individual data requires a lot of comput-
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ing capacity. The 1,000 simulations performed on section 4.2.1 required each
20 minutes of running time, for up to 130,000 policyholders simulations. The
time required is mostly due to the survival simulation algorithm, that is more
complex than Poisson or Cox processes simulation. This is suitable for small
portfolios with small projection periods, but it is not for larger portfolios and
larger projection periods, which could take hours to run, as well as a lot of
memory capacity to store all the simulation results. Choosing simpler survival
function may be a good turnaround on the running time, but would lead to a
simulation bias. A choice has to be made between the precision of the model
and the time to run it.

Another field of application of this model would be to use it for pricing pur-
poses. Indeed, pricing actuaries may be interested in applying the model to
predict if the customer would be profitable in the portfolio or not. For instance,
the pricing algorithm could propose better prices to potential policyholders for
whom it is predicted a long survival in the portfolio, and on the other hand to
increase the price for those who are likely to stay a very few time. This can
be achieved through the survival function. Indeed, here, a simple parametric
function has been used to model the survival behavior. However, if one insurer
has access to basic data required to model, it is also likely to have access to a
much wider range of variables, that are usually valuable for pricing purposes.
Thus, the pricing actuaries may be interested to study the survival depending
on the characteristics of each of them. Such a consideration could be possible
using a survival model like the proportional hazard Cox model. It integrates
covariates that are likely to explain the termination behavior of policyholders,
see [Wanl15]. Those covariates could also be used to better fit the underwriting
behavior, as adverse selection and information asymmetry could also be inter-
preted from those covariates.

To conclude, this study drafts an extension of the model of Jean-Philippe
Boucher [BCP16]. Even if the results are satisfying in the sense that the variab-
ility has been better modeled, it is not fully captured as some of the variability
may be explained from exogenous factors, or from some of the very strong hypo-
theses that have been adopted, but that are likely to be unverified empirically.
Some of those hypotheses can be relaxed, but require an increased complexity
of the overall model. However, some potential for improvement has been iden-
tified, and could be the fruit of future work. Finally, this model opens many
doors for applying it in many actuarial fields, from internal modeling, to pricing.
It also confirms that individual data play a key role in actuarial models, and
gives many opportunities.
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